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ABSTRACT An Intelligent Internet of Things network based on an Artificial Intelligent System, can
substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent
system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things
network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-
wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-
feedback to increase its long short-term memory. The artificial intelligent system is implemented for next
step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is
adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-
wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity
in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is
proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability.
The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using
modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network.
Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by
12.7% more than with Deep Learning Recurrent Neural Network.

INDEX TERMS Deep learning, intelligent-IoT, element-wise attention gate, quality of service.

I. INTRODUCTION is a crucial responsibility of the IoT. This communication

THE infrastructure of Wireless Sensor Networks (WSN) is
built in an ad hoc way with arranged nodes informing a Base
Station (BS) about events. A WSN is incorporated with smart
technologies to deliver fast Internet of Things (IoT) commu-
nications among different applications [1], [2]. A WSN with
IoT in a real-world application has to convey a wide range of
data and owing to the limited bandwidth, these different types
of data need to be managed with different priorities in order
to avoid congestion in the network [3].

Area monitoring, where multiple IoT nodes make an
assessment of the data and communicate them to the gateway
or to the cloud for processing, assumption, and analysis,
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is costly when these data are high-dimensional (e.g., videos
or time-series data). IoT networks having limited bandwidth
and hence, low power devices may not have the capacity
of supporting frequent transmissions with high data rates.
With the advent disruptive IoT involving huge amounts of
different types of data, Machine Learning (ML) and Deep
Learning (DL) mechanisms will play a pivotal role in bring-
ing intelligence to these networks [4], [5]. Among other affor-
dances, ML and DL can play an essential role in addressing
the challenges of resource management in large-scale IoT
networks [6]. Applying deep neural networks to IoT devices
could, thus, bring about a generation of applications capable
of performing complex sensing and understanding tasks for
supporting a new realm of cooperation between humans and
their physical environment [7].
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The implementation of Convolutional Neural Net-
works (CNNs) in different fields has increased in recent
years [8]-[10]. The main focus of this paper is to design an
intelligent controller based on a deep learning CNN. More-
over, an algorithm that is more efficient than the traditional
NN is identified for training the proposed system and thus,
achieving high Quality of Service (QoS).

A. MOTIVATION

The most significant matter in the subject of traffic prediction
in an IoT network is the amount of data stream. An increase
in the number of sensors that communicate with the IoT-
routers in the network leads to raising the traffic load in
the sink node buffer. A major concern of researchers is the
use of Artificial Neural Networks (ANNs) and ML with IoT
networks. A special issue on artificial intelligence and ML in
[11] outlines the AI algorithms that have been implemented
in networking and communications. The proficiency of deep
learning based on ANNs has been demonstrated in secu-
rity, routing, traffic management and load balance in an IoT
network [10], [12]-[14].

While managing the QoS, optimizing the routing process
of the network is an essential requirement for enhancing
network performance. Thus, it is essential to build up an
intelligent routing mechanism that has the ability to learn
from the past behavior of network and then, be able to adjust
itself to the current behavior [15]-[17]. QoS provisioning
is the most important performance metric when designing
future wireless networks. In practice, the buffers are limited
and thus, data buffering leads to buffer overflow and delay,
both of which are important QoS considerations [18].

B. CONTRIBUTIONS
The contributions of this paper are summarized as follows:

1. We propose an artificial intelligent system based on
a deep learning modified Element-wise Attention Gate
(EG-CRNN) to predict the amount of packets in the network
and to manage the cluster head of the sensors. The EG-CRNN
has an Element-wise Attention Gate and self-feedback aimed
at increasing its long short-term memorys;

2. We propose a training algorithm for a deep learning
EG-CRNN to update the weights of EG-CRNN and to speed
up the training process in order to reach the error goal;

3. To explain the effectiveness of the architecture proposed,
a comparison is made among the Artificial Intelligent Sys-
tem (AIS) based on EG-CRNN with others based on different
structure of CNN in terms of speeding up the training process
and minimizing the error.

The rest of this paper is presented as follows. Section II
reviews related works, whilst section III presents the pro-
posed system architecture and section IV presents the pro-
posed artificial intelligent system. Then, in section V, the
training algorithm of the proposed intelligent system is
explained. In section VI, the evaluation setup is provided and
the results are provided, with the QoS metrics being evalu-
ated. The conclusion to the paper is presented in section VII.
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Il. RELATED RESEARCH WORK

Sensor-integrated IoT devices are the main handler for gath-
ering large amounts of data. Managing these huge data sets is
one of the critical challenges to be undertaken. In this section
two important strategies are taken into consideration. The
first one is how to select an appropriate CNN as a controller
to overcome the congestion in I-IoT network, and the second
one is how to find a clustering technique based on CNN rather
than that one based on traditional method as in [19], [20].
The most up-to-date research concerning the deep learning
CNN use in different applications is also introduced in this
section.

The CNN was used to increase the link capacity and
energy efficiency of the available channel state information
at the base station in wireless network. The proposed archi-
tecture of CNN as in Guo et al. [21] aimed at improving
the bandwidth resources. The idea of adding more layers in
neural network to have deep neural network was proposed by
Mukherjee et al. [13] for optimization transmit power in an
industrial IoT network with a clustering approach based on a
deep learning CNN technique, with which they were able to
maximize the security capacity of the network and improve
the QoS. The CNN can be more powerful when adding
recurrent feedback to its structure. Mou ef al. [22] proposed
a Recurrent Convolutional Neural Network (ReCNN) struc-
ture trained to learn a joint spectral-spatial-temporal char-
acteristic representation in a uni?ed framework for change
detection in the field of image processing. This structure was
shown to provide good results in multi-temporal remote sens-
ing image analysis. Sonny et al. [23] proposed Long Term
Evolution (LTE)-based Channel State Information (CSI) and
CNN for smart parking solutions to minimize traf?c conges-
tion. Belmonte-Herndndez et al. [24] used deep RNN with
WSN for indoor person tracking to improve the estimation
of the position captured by wireless sensors. Yang et al. [25]
proposed a hybrid architecture, named the Parallel Recur-
rent Convolutional Neural Network (PRCNN) for applica-
tion in the field of mobile IoT and sensing devices. Also
Zhang et al. [26] proposed a hybrid method for CNN and
RNN used for estimation of the remaining useful life of prog-
nostic health management technology, which provides better
performance of this estimation than CNN. Many researchers
focus on increasing the ability of NNs to have concentration
effectiveness. For example, Zhang et al. [27] proposed a sim-
ple effective Element wise-Attention Gate (EleAttG), which
can be easily added to an RNN block (e.g., all RNN neurons
in an RNN Ilayer), to empower the neurons to have con-
centration effectiveness. Bai ef al. [28] proposed DL-RNN,
a real-time wireless localization model, which consists of
double recurrent neural networks (RNNSs): the first RNN
estimates the location and the second filters the location,
which further improves wireless fingerprinting localization
performance. In the field of improving the training algo-
rithm of deep learning CNN, researchers have proposed some
algorithms to empower the CNN to have more attentiveness
capabilities [24]-[27].
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Also, the clustering techniques are very effective criteria
in the field of minimizing the congestion in I-IoT networks.
Farsi et al. [29] introduced a Congestion-Aware Clustering
and Routing (CCR) protocol to alleviate the congestion issue
over the network. Their protocol aimed at satisfying the QoS
requirements of increasing the network lifetime and raising
the number of packets sent. The bandwidth allocation method
is particularly effective in the overloaded network scenario,
where the higher-priority traffic interferes with the other
applications.

Mukherjee et al. [30] presented a Multi-Input Multi-Output
(MIMO) technique model in WSNs, which addresses the
cluster head recognition issue for MIMO sensor networks
by using Back Propagation Neural Network (BPNN). The
proposed model showed a better performance in terms of
minimizing the energy consumption, the error rate, and the
computation time.

In this paper, we proposed an EG-CRNN structure which
combines the advantages of DL-RNN structure and the
EleAttG structure in order to improve the efficiency of the
I-IoT network. Thus, a comparison is carried out among the
proposed structure and those up-to-date ones proposed in [23]
and [25]. We utilized some features of their structures to serve
our own application. Although the structures of Al proposed
in [23] and [25] have different applications from our own
application, the idea is how to find the best Al structure in
terms of high speed of training with minim error and has the
ability to predict the traffic flow in IoT network.

Ill. SYSTEM ARCHITECTURE
Fig.1 shows the architecture introduced in this paper. The
evolution in the science of the deep learning, CNN and com-
munications means that these technologies have now been
adopted in a wide range of life aspects. Our target is the appli-
cation of an Intelligent Internet of Things (I-IoT) network in
the field of smart healthcare post-COVID-19. The proposed
network, as shown in Fig.1(a), consists of number of I-IoT
monitoring nodes classified as a number of clusters, mobile
data gathering and an IoT hospital cloud network. One solu-
tion for increasing network scalability and prolonging the life
of the network is to use a mobile sink node [31]. Each cluster
can be manage itself based on a deep learning EG-CRNN,
as shown in Fig.1(b). The proposed architecture incorporates
an IoT patient monitoring area. This area is specified as the
number of sensing nodes that are categorized according to
their actions into three kinds: Cluster Head (CH), effective
node and quiet node. Effective member nodes transfer their
data to a CH, which in turn, passes on accumulated data to
the mobile data gathering node as an IoT Gateway (GW).
Practically, the GW links the sensors using a bidirectional
single hop connection through the Internet and the GW can
connect to the Internet by regional routers with firewalls [32].
The arriving data flow from the buffer of the CHs through
a count of active sensors is directed to the hospital cloud
network.
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The proposed EG-CRNN, which has a distributed decision
making structure, is used to process the gathered data and to
analysis them. The parameters that are used in the selection
of the best CH are: remaining energy of the IoT nodes, their
density and the remaining space of the buffer capacity.

The density of one node refers to the amount of adjoining
nodes accumulated in a specific range place.

IV. THE PROPOSED ARTIFICIAL INTELLIGENT SYSTEM
The I-IoT network is formed in a homogeneous network,
as illustrated in Fig. 1. The function of the sensors is to
recognize the data from distinct medical devices with distinct
kinds of traffic. The periodic data are gathered from an IoT
platform, (e.g., the blood pressure of the patient, glucose
level, temperature or heart beat).

In this situation, the IoT can dynamically gather patient
data to catalyze protective care, diagnostics etc. and to eval-
uate remediation outcomes. In Fig.1(a), the hospital cloud
network consists of a number of routers, which depends on
the considered number of IoT devices. Each router and CH
has its First-In First-Out (FIFO) buffer with a pre-known
capacity.

We have proposed an intelligent controller in the network,
as shown in Fig.1(b), which is based on the EG-CRNN
methodology. This controller has two tasks which are
explained as follows.

1) EG-CRNN PREDICTION CONTROLLER
The proposed EG-CRNN architecture has one input layer,
four CRNN layers, as depicted in Fig.1(b), a Rectified Linear
Unit (ReLU) layer and an output layer. All the EG-CRNN
layers, except for the output layer, have the ReUL activation
function, as f (net) = max(0, net). The ReUL function deliv-
ers faster than sigmoid function during the gradient decent
training algorithm. The EleAttG element proposed by [27]
is modified in the proposed structure, as an Element-Wise
Attention Gate (EG), which is used in the RNN to empower it
to have concentration effectiveness. Fig. 2 shows the structure
of the RNN with the modified EleAttG and accordingly,
we call this structure EG-CRNN. The RNN has four layers,
these being the input layer, the two invisible layers with the
self-feedback « and the output layer. Each node in the invisi-
ble layer has an Element-Wise Attention Gate. The activation
function of the output layer is linear function as f (net) = net.
The present input /; and the past invisible states /,_; are
used to consider the levels necessary for each element of the
input. g; is the response of the EG. The vector g; has the same
dimension as the input vector /; and is computed as:

& = ©Wiel; + aWpghi—1) (1)
ItN = &t @ Il‘ (2)
where, O denotes the element wise product and ® is the acti-
vation function. Wy, and Wj,, are the weight matrices. When

the response of gate function is near to zero, the invisible
layer state h; with its self-feedback is prompted to neglect
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FIGURE 1. a) Proposed I-loT Network. b) The deep learning EG-CRNN as an AIS with an I-loT monitoring area.

the previous invisible state and shifts with the current input
individually. Fig.3 shows the internal structure of EG, with
the computations of the EG block being as follows:

rt = Wi 1" + aWy h—1),

Zy = Wizl + aWpzhi—1),

by = tan(Wipl;” + aWpn(r1 © ahy—1),

hy =0 —=2)0ah_1+ (Z O k). 3)

where, Wy, Wy, Wiz, Wyz, Wy, and Wy, are the weight matri-
ces in the internal element gate structure. The EG-CRNN
has two main components: features extraction and classifi-
cation. The features extraction of the traffic flows, like the
packet generation rate and the lengths of the packet queues,
is constructed of convolutional layer, which is the input to
EG-CRNN. The classification component represents the out-
put of EG-CRNN layer. Two binary values are collected from
path mixtures as output. These are (1,0) where congestion
occurs, and (0,1) where it does not. Those path mixtures that
will not lead to congestion are chosen and the EG-CRNNs
will be periodically updated when they are being used to
select this path mixture.

The traffic flow of every CH is recorded by the CH itself,
which then sends the data to the mobile data gathering that
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is forwarded to the IoT GW. The EG-CRNN controller,
as shown in Fig.1(b), uses the data such that the traffic
patterns of all CHs will be organized in a matrix and then
be utilized as EG-CRNNs input to select the path mixture for
the period ahead of time. Fig.4 illustrates the proposed AIS,
where the error is the difference between the target and real
traffic.

To illustrate the mechanism of the proposed system,
we assume that we have an IoT platform to be controlled,
as shown in Fig. 4, where the traffic flow equation is com-
puted as:

# (e + 1) = sar[ff (if (t) + Tu(1)] “

where, #f(¢) is the traffic flow at time ¢, T is the sampling
period, u(t) is the control effect at time ¢ and sar[-] is the
saturation function. The nonlinear function,ff(-), represents
the real traffic. This is considered to be undefined and it
is a function of traffic input, buffer size, and free service
capacity at the active CH nodes. The control effect at time
t is computed as:

1 n
) = T —F W) + ke + kv / o) + kpkpet  (5)

where, kp is the proportional gain, ky is the coefficient of
the integral in the Proportional Integral Derivative (PID)
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FIGURE 2. The structure of RNN with modified EleAttG. The green box represents the modified EG,
whilst the self-feedback « is a constant value between (0 & 1) used here to increase the capability of

the network for feedback recurrence.

controller, used to improve the accuracy of the network and
to overcome the steady state error as well as maintaining the
stability of the network during the learning mechanism. kp is
the derivative coefficient in the PID controller used to reduce
the damping ratio of the traffic. Combining the PID controller
with a Deep Neural Network (DNN) accelerates the training
process of the latter, which will enhance the controllability of
the network [33].

The f (#f (1)) is the predicted traffic and the #fT is the target
traffic.

The minimum rate MR of the IoT node, is calculated as:

MR = Qclog(Rc) (6)
where, Q¢ is the buffer size of (C) CH node with the rate R¢.
The total network utilization v is maximized as in equation:

Y = maximize Z QOclog(Rc) 7)
C

The traffic flow at the next time interval is described by:

tfoew(CHc(t + 1) = lfe.n‘im)/M ©

where y is the count of the effective CH.

2) EG-CRNN CLUSTERING ASSIGNMENT

The other task of the AIS is to choose the best CH to sus-
tains traffic. The I-IoT network is handled depending on the
deep learning EG-CRNN. The EG-CRNN here updates its
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FIGURE 3. The internal structure of the element gate. Each line represents
a vector, whilst the blue boxes represent the modified EG with the output
vector and the yellow circles represent element wise operation (vector
product or vector addition.

weights in an online mode. The features extraction pertains
to the parameters referred to in Section III as input, while the
classification for generating the output is the logical value,
where logic O is interpreted as cluster affiliation and logic 1 is
a CH.

V. EG-CRNN TRAINING ALGORITHM

The training algorithm that is used to learn the EG-CRNN is
described in this section. The proposed algorithm is based on
the extension of the negative gradient descent algorithm for
minimizing the error between the estimated and real traffic.
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The input to the EG-CRNN is allocated to the traffic flow
aggregation rate #f(¢), i.e., the packets number reaching the
mobile data gathering node from the network. There are two
phases for the training algorithm in EG-CRNN: the offline
and online phases. The EG-CRNN trains offline to determine
the size of the buffer of IoT platform and then it trains
online to identify the traffic flow. In the online training phase,
the weights of EG-CRNN are updated to the new environ-
ment. During the offline training, the EG-CRNN adjusts its
weight through the training process depending on random
traffic as input to the EG-CRNN, which is generated from
the expected traffic that the network can achieve depending
on the past behavior of the network. At first, the weights are
initiated arbitrarily between [-1,4+1] and then, after imple-
menting rounds of training, the weight values are updated
more accurately with adaptive learning rate 1. The weight of
each connection is influence by the response function ®.
The response function ®(g;) is defined as:

P(gr) = tan (i—t) ©))

For simplicity, we define the function ®(g;) as y; and ®(Z;)
as y;. The error E represents the difference between the target
and estimated traffic, being calculated as:

E = (T —F(tf (1)) (10)

The weights of the invisible and output layers will be updated
as stated in the following equations:

Wig(t + 1) = wpg(t) — Awyg(t). (11)
where,
Awpg(t) = 1.6;.yh. (12)
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TABLE 1. Parameters of the training algorithm.

Symbol Meaning
T The time constant
Wrg Weight between input and invisible layers
Whg feedback weight between invisible and input layers
ni Number of neurons in the input layer
nh Number of neurons in the invisible layer
7 Neuron sequence in the input layer
h Neuron sequence in the invisible layer
i Neuron sequence in the output layer

And the Delta functions §; and ; are computed as:

) E (13)
j —.
Z(z 1) Whg 5
(NI) 0}:‘
diwp,
5 = (i=1) % g (14)
nh
> (h=1) ng o
where,
wig(t + 1) = wie(t) — Awye(2). (15)
and
Awpg(t) = 1.8;.yi. (16)

Table 1 describes the symbols that are used in the above
equations. The flowchart of the proposed AIS is shown
in Fig. 5. The initial values of the parameters are chosen
by trial and error, then being updated through the training
algorithm. EG-CRNN is adaptive according to the traffic
dynamics and the performance of the IoT active platform,
such that the EG-CRNN controller keeps harmony between
the buffer sizes and traffic flow of the network. In fact, adding
EG to the CRNN is influential in enhancing many CRNN
based learning actions.

VI. RESULTS AND EVALUATION

We consider scenario with 150 IoT sensors that are placed
randomly in a square area of (200 x 200) meters. The appli-
cation area is shown in Fig. 6, where the mobile data gathering
node can move to the center site among effective clusters
according to the equation:

C C
> X1 Y Y
Middle(Cy = =L =L
C C
where X and Y are the positions of C effective CHs. This
mechanism guarantees that the mobile data gathering node
is fairly close to data IoT devices. In general, the mobile
data gathering node can enhance the QoS [34], [35]. The
IoT devices are generated traffic at the beginning of each
scheduling period, with the IoT generating low to high flow.
The EG-CRNN contributes to minimizing the congestion
level regarding the occupied percentage of packets in the affil-
iate queue buffer. So, if this percentage overrides a threshold,
the CHs are categorized as congestion. The threshold level

7)
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TABLE 2. Parameters of the emulation.

The FIFO buffer size of CH 200 packets
The FIFO buffer size of each IoT cluster member 60-120 packets
The packet size 500 bytes
The emulation time 300 msec
The packet generating of each IoT sensor 3-5 (packet/msec.)

here, is set at 95% of the FIFO buffer capacity and it is chosen
based on empirical valuation.

The emulation is run with the MININET emulator
and Python programming language using the parameters
explained in table 2.

The following suppositions are utilized for the network:

1. The overall waiting time of the packet in the FIFO buffer
represents the amount of the Round Trip (RT) communication
delay in the links and the chaining processing delay in the
cloud;

2. Static flow is generated by all active IoT nodes per unit
of time;

3. The link between the mobile data gathering, CH, and its
nodes constitutes the wireless links of a bidirectional single
hop;

4. IoT devices can establish their mode as reported by the
CH buffer space and its density.

Fig. 7 shows the minimization of the Root Mean
Square (RMS) error during the offline training phase, which
is computed as:

epochs

RMS = | ( ) YWy =fafp? (18
q=1

epochs
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In Fig. 7 a comparison among the proposed system based
on EG-CRNN, the system based on CNN and that based on
a Deep Recurrent Neural Network (DRNN) without adding
element wise gate is made. The structure of CNN has one
input layer, four Feedforward Neural Network (FFNN) layer,
a (ReLU) layer and an output layer. While, the structure of
DRNN is the same as CNN but instead of FFNN layer there
is RNN layer. It is evident from the figure that EG-CRNN
can reach the error goal (at 22 epochs) faster than DRNN
and CNN, which is because the element wise attention gate
and the self-feedback enhances the training process, thus
speeding up the network in reaching the error goal. In fact,
the network does not need as much information in the training
process as CNN. The EG-CRNN can minimize the RMS error
by 56% as compared with CNN and by 37.14% as compared
with DRNN.

Based on the results obtained from Fig. 7, we implement
the I-IoT network with the proposed EG-CRNN, and DRNN,
because the latter is better than CNN in terms of minimizing
the RMS error. Energy consumption of I-IoT network with
respect to total number of IoT nodes is shown in Fig. 8. The
proposed EG-CRNN initially consumes energy, but gradually
with the increasing number of nodes the consumed energy
becomes less. Therefore, it can be considered that EG-CRNN
has the capability to achieve good system performance than
DRNN. The system residual energy is one of the most impor-
tant parameters, in terms of improvement the QoS. This
implementation is illustrated in regard to QoS in terms of
Traffic Prediction (TP), Packet Loss Ratio (PLR), Buffer
Usage Ratio (BUR),and Network Lifetime (NLT).
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A. TRAFFIC PREDICTION (TP)

First of all, we implement the proposed network without
a controller. The traffic flow getting to the BS is shown
in Fig. 9. It is clear from this figure that the traffic flow is
exceeding the capacity of the FIFO buffer. Fig. 10 illustrates
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FIGURE 8. Energy consumption profiles for networks with different
number of nodes.

the comparison of the real #f and the estimated f (#f) delivered
by the network after applying the AIS. It can be seen that
the EG-CRNN can estimate the traffic of the network as
the actual traffic is very close to the estimated one. At the
beginning of the simulation, the actual traffic rises to a high
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FIGURE 10. Comparison between the estimated and real traffic when
EG-CRNN is used.

level until the controller starts to work to predict the traffic
and to reduce the congestion, and after a period of time
has passed, the actual traffic follows the estimated amount.
Fig.11 shows the same comparison with the exception that
DRNN is used as the congestion controller. It is clear from
Fig. 11 that DRNN is not a good estimator of the traffic,
because the arrived packets are more than the capacity of
the buffer. The performance of EG-CRNN is better than
that of DRNN, a thing which is obvious when the network
maintains its traffic within the buffer size of CH. There are
four CHs in this emulation. Once they are active, the network
using the proposed structure can work in high traffic flow
and can control the traffic so as to eliminate congestion
at the queue. EG-CRNN has a good ability to predict the
traffic as compared with DRNN. This is because the proposed
training algorithm has enhanced the performance of EG-
CRNN. Also, the addition of the EG element to the proposed
network strengthens its long and short term memory. In sum,
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FIGURE 12. The packet loss ratio.

the proposed system enhances the ability of the network
to learn during offline training, which depends on previous
traffic flow in order to predict the current traffic flow.

B. PACKET LOSS RATIO (PLR)

The packet loss ratio can be defined as the ratio of the number
of packets loss by the network to the total number of packets
generated by the active sensor nodes. Fig. 12 explains the
packet loss ratio in the I-IoT network, when the EG-CRNN
is applied. A comparison between the EG-CRNN and DRNN
is presented in Fig.12. We can see from Fig.12 that the PLR
of the proposed system is better than that of DRNN, because
the prediction controller and CH assignment have the ability
to reduce the sending rate of the effective clusters during the
transmission mechanism. The loss ratio of the packets in the
proposed system is within 7% of the total packets sent while
with DRNN the ratio is 8.5%. This means that the proposed
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system can estimate the traffic as well as the capacity of the
buffer much better than DRNN.

C. BUFFER USAGE RATIO (BUR)

Fig.13 depicts the buffer usage ratio of the network using
EG-CRNN as compared with DRNN. This ratio is defined as
the number of packets generated by the CH to the capacity
of the buffer of the data gathering node. It is clear from
Fig.13 that the controlled network guarantees good buffer
usage ratio. It is also noted that the buffer of the CH in
EG-CRNN does not exceed its capacity. In fact, the values
of BUR are less than 95% of the capacity of the buffer.
This indicates that the controller can achieve good usage of
the buffer in terms of high throughput and less congestion.
The recurrence of the proposed system gives it the power to
predict the traffic more efficiently as compared with DRNN.

D. NETWORK LIFETIME (NLT)
A big concern with IoT networks is how to maxi-
mize the network lifetime while controlling the coverage
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TABLE 3. Comparison results.

Controller type | NLT (msec.) | No. of epochs
EG-CRNN 1020 22
DRNN 890 35
CNN 795 50

requirement [36]. Fig. 14 shows the comparison of the life-
time of the network when the EG-CRNN, DRNN and CNN
are implemented. It is obvious that the proposed system
extends the life of the network more than DRNN and CNN
by 12.7% and 22.05%, respectively. The measurement of the
lifetime of the network adopted here is the time needed ti take
out the energy of all the IoT sensors in the IoT network. The
mobile data gathering node that is used in the network has the
affordance of extending the network lifetime, i.e. the sensors
can retain their energy for a longer period of time. Table 3
shows the numerical results of the NLT and the number of
epochs of RMSE during the offline training phase. It is also
clear from Table 3 that the proposed structure has better
results from other structures, viz. DRNN and CNN.

VII. CONCLUSION
This paper proposed an Intelligent-IoT architecture to be
utilized in health care applications. Also, this paper proposed
a deep learning AIS as a controller, which has the ability
to estimate the flow of the packets of each cluster in the
network. This controller, based on EG-CRNN, has an element
wise attention gate and self-feedback to predict the traffic.
The proposed system is also able to select the CH and its
members. The emulation results show that adding the EG to
CRNN substantially boosts network performance and hence,
the QoS is improved in the I-IoT platform. The AIS provides
the ability to select the CH and its members efficiently, which
is illustrated in the results of QoS. In addition, the mobile data
gathering node proposed in this paper is effective in terms of
enhancing the QoS. The RMS error is decreased by 37.14%
with EG-CRNN as compared with DRNN and hence, the QoS
is enhanced, e.g., the NLT is improved by 12.7% over DRNN.
Controlling the network by EG-CRNN is much more effec-
tive than with by DRNN owing to the element wise attention
gate that empowers the training algorithm to reach the error
goal in a timely manner.
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