17 research outputs found

    Tropical fruit waste-derived mesoporous rock-like Fe2O3/Ccomposite fabricated with amphiphilic surfactant-templating approach showing massive potential for high-tech applications

    Get PDF
    Recently, the glycolipids biosurfactant materials have widely been utilized for many industrial applications due to their feasible surface activity, biodegradable as well as eco-friendly nature. Even though many of the earlier studies have been reported on such kind of surfactants, in this study we focused on porous rocks-like Fe2O3/C composites, which were magnificently synthesized from a novel tropical fruit biomass, using a glycolipid biosurfactant with high specific surface area of about 466.9 m2/g via a biofunctional single-step thermochemical method. They could be applied as an adsorbent to adsorb the pharmaceutical pollutants mainly, DCF from aqueous solution. Moreover, the highest adsorption capacity for DCF could be achieved, which is of about 77.51 mg/g. Furthermore, as-prepared glycolipid functionalized Fe2O3/C composites were used as electrode materials for high-performance supercapacitors. Galvanostatic charge-discharge results showed that the Fe2O3/C modified electrode possesses a specific capacitance of about 374 F/g with a current density of 0.2 A/g and it has retained 84% of capacitance, even after 3000 cycles. The remarkable performances are mainly due to the surface amendments of the Fe2O3/C composite, using biologically produced glycolipid surfactant, would have more favorable foreground towards the upcoming energy crises.publishedVersio

    Novel organometallic catalyst for efficient valorization of lipids extracted from Prunus domestica kernel shell in sustainable fuel production.

    Get PDF
    This study focuses on converting Plum Kernel Shell (PKS) waste biomass into biodiesel using a novel synthesized heterogeneous catalyst, contributing to the pursuit of renewable fuel from sustainable resources. Plum Kernel Shell (PKS) is waste biomass generated from plum fruit and available abundantly; utilizing it can help in many ways, such as overcoming environmental issues and promoting a circular economy. The precursor for the heterogeneous catalyst is derived from post-oil extraction waste biomass and further modified with metallic oxides (CuO and Mo) due to its acidic nature to enhance its efficacy for biodiesel production. Thorough characterization of the synthesized catalyst was conducted using analytical techniques such as XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive X-ray Spectroscopy), BET (Brunauer-Emmett-Teller), and XPS (X-ray Photoelectron Spectroscopy) to elucidate its nature and performance. The transesterification process was systematically optimized by varying parameters such as temperature, time, methanol-to-oil ratio, and catalyst loading. The optimized yield of 92.61% of biodiesel resulted under ideal conditions, specifically at 65°C, 150 min, 5 wt% catalyst loading, and an 18:1 M ratio. The biodiesel derived from PKS oil exhibited promising fuel properties encompassing cold flow properties, density, viscosity, cetane number, and flash point, validating its potential as a viable alternative fuel source. Furthermore, the synthesized novel catalyst demonstrated exceptional efficiency, retaining stability over five cycles without significant reduction in biodiesel yield. These findings underscore the viability of PKS biomass as a renewable and sustainable source for both catalyst synthesis and biodiesel production

    Indigenous marine diatoms as novel sources of bioactive peptides with antihypertensive and antioxidant properties

    Get PDF
    Several bioactive compounds from microalgae have demonstrated diverse biological activities with positive effects on human health. However, the potential of bioactive peptides as functional foods is still undervalued. Therefore, the exploration of microalgae strains as sources of bioactive peptides could reveal strong and unique bioactivities, especially when these marine sources have never been explored before. For this aim, protein extracts from six indigenous marine diatoms were subjected to enzymatic hydrolysis using four proteases (flavourzyme, pepsin, papain and trypsin). The hydrolysates were then tested for angiotensin converting enzyme (ACE)-inhibitory, antioxidant and antihypertensive properties. Results showed that papain hydrolysates from all microalgae strains exhibited strong ACE-inhibitory activities and antioxidant properties. In particular, protein hydrolysates from Bellerochea malleus were found to reduce blood pressure properties of 17 mmHg after 5 days of oral administration to SHR animals. These results revealed the potential of bioactive peptides from indigenous marine diatoms for use as functional foods or nutraceuticals

    Isolation and identification of indigenous marine diatoms (Bacillariophyta) for biomass production in open raceway ponds

    Get PDF
    For the successful, large‐scale cultivation of microalgae, which for our work refers to diatoms, it is important to select the appropriate species for the right environment. Intensive research on the growth of different strains of microalgae from several regions worldwide is an ongoing effort. The aim of our research in this context was to select the best isolates of diatoms from different coastal sites in Oman, a region whose flora is poorly known, and identify these species using molecular (nuclear‐encoded small subunit ribosomal RNA and chloroplast‐encoded rbcL and psbC) and morphologic data. We aimed also to investigate and measure the growth rate, biomass production and fatty acid composition under ambient environmental conditions. Our results showed that in contrast to most of the research reported in the literature, the production of biomass from six isolates has been successfully carried out with reduced amounts of nutrients and without CO2 addition. Growth rates for species cultivated outdoors were high and ranged from 0.37 to 0.92 day−1. These findings are economically very promising as fast growth rates, associated with reduced operational costs, could remarkably improve the production efficiency and thereby justify their use as biomass feedstocks. Molecular data revealed that one isolate was Bellerochea malleus, four isolates represented an unidentified species of Bellerochea and the remaining strain studied represented an unidentified species of the genus Nitzschia. These six strains were rich in polyunsaturated fatty acids, with an average of 47% of the total fatty acids, confirming their potential use as aquaculture feed supplements

    Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects

    Get PDF
    Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future

    Tropical fruit waste-derived mesoporous rock-like Fe2O3/Ccomposite fabricated with amphiphilic surfactant-templating approach showing massive potential for high-tech applications

    No full text
    Recently, the glycolipids biosurfactant materials have widely been utilized for many industrial applications due to their feasible surface activity, biodegradable as well as eco-friendly nature. Even though many of the earlier studies have been reported on such kind of surfactants, in this study we focused on porous rocks-like Fe2O3/C composites, which were magnificently synthesized from a novel tropical fruit biomass, using a glycolipid biosurfactant with high specific surface area of about 466.9 m2/g via a biofunctional single-step thermochemical method. They could be applied as an adsorbent to adsorb the pharmaceutical pollutants mainly, DCF from aqueous solution. Moreover, the highest adsorption capacity for DCF could be achieved, which is of about 77.51 mg/g. Furthermore, as-prepared glycolipid functionalized Fe2O3/C composites were used as electrode materials for high-performance supercapacitors. Galvanostatic charge-discharge results showed that the Fe2O3/C modified electrode possesses a specific capacitance of about 374 F/g with a current density of 0.2 A/g and it has retained 84% of capacitance, even after 3000 cycles. The remarkable performances are mainly due to the surface amendments of the Fe2O3/C composite, using biologically produced glycolipid surfactant, would have more favorable foreground towards the upcoming energy crises

    Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2)

    No full text
    The present study intended to produce biodiesel as an efficient fuel from waste Phoenix dactylifera L. kernel oil in the presence of synthesized efficient heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2). The performance of synthesized metallic oxide catalyst was evaluated based on biodiesel yield and the process has been optimized. The optimum biodiesel yield was 96.4%, when process temperature was 90 degrees C, catalyst loading 3 wt%, methanol to oil ratio 15:1 and reaction duration was 4h. The product biodiesel was characterized in order to evaluate its quality according to ASTM and EN standards. Thus, characterization of biodiesel revealed that it fulfills the standard ranges defined by ASTM and EN: its acid value was 0.11 mg KOH/g, density 881 kg/m(3), viscosity 3.85 mm(2)/s, flash point 142 degrees C and suitable low-temperature properties. It can thus be concluded that synthesized heterogeneous catalyst can be used efficiently for biodiesel production from waste Phoenix dactylifera L. kernel oil which satisfied the international standards defined by ASTM and EN

    Biodiesel production over a catalyst prepared from biomass-derived waste date pits

    No full text
    Date palms are predominately produced in arid regions and the date pits, or seeds, produced from them are sometimes considered to be a waste. Date pits, ground to powder following an oil extraction, were used to synthesize a renewable heterogeneous catalyst. The green carbon catalyst was modified by an alkaline earth metal oxide (CaO). The oil extracted from date pits was transformed into biodiesel. The biodiesel process was optimized and the optimal yield was 98.2 wt% at a reaction temperature of 70 °C, reaction time ∼120 min, methanol to oil molar ratio of 12 and catalyst loading of 4.5 wt%. The quality of the produced biodiesel meets the standard limits set by regulating agencies (ASTM, EU) which indicates its suitability to be used as a fuel. Thus, it can be concluded that the green carbon catalyst synthesized from waste date pits has a high potential for biodiesel production. Keywords: Biodiesel, Green catalyst, Alkaline earth metal oxide, Waste date biomass, Biomass-derived fue

    Integrating life cycle assessment and characterisation techniques: A case study of biodiesel production utilising waste Prunus Armeniaca seeds (PAS) and a novel catalyst

    No full text
    Prunus Armeniaca seed (PAS) oil was utilised as a waste biomass feedstock for biodiesel production via a novel catalytic system (SrO–La2O3) based on different stoichiometric ratios. The catalysts have been characterised and followed by a parametric analysis to optimise catalyst results. The catalyst with a stoichiometric ratio of Sr: La-8 (Sr–La–C) using parametric analysis showed an optimum yield of methyl esters is 97.28% at 65 °C, reaction time 75 min, catalyst loading 3 wt% and methanol to oil molar ratio of 9. The optimum catalyst was tested using various oil feedstocks such as waste cooking oil, sunflower oil, PAS oil, date seed oil and animal fat. The life cycle assessment was performed to evaluate the environmental impacts of biodiesel production utilising waste PAS, considering 1000 kg of biodiesel produced as 1 functional unit. The recorded results showed the cumulative abiotic depletion of fossil resources over the entire biodiesel production process as 22,920 MJ, global warming potential as 1150 kg CO2 equivalent, acidification potential as 4.89 kg SO2 equivalent and eutrophication potential as 0.2 kg PO43− equivalent for 1 tonne (1000 kg) of biodiesel produced. Furthermore, the energy ratio (measured as output energy divided by input energy) for the entire production process was 1.97. These results demonstrated that biodiesel obtained from the valorisation of waste PAS provides a suitable alternative to fossil fuels
    corecore