17 research outputs found

    Critical wetting of a class of nonequilibrium interfaces: A mean-field picture

    Full text link
    A self-consistent mean-field method is used to study critical wetting transitions under nonequilibrium conditions by analyzing Kardar-Parisi-Zhang (KPZ) interfaces in the presence of a bounding substrate. In the case of positive KPZ nonlinearity a single (Gaussian) regime is found. On the contrary, interfaces corresponding to negative nonlinearities lead to three different regimes of critical behavior for the surface order-parameter: (i) a trivial Gaussian regime, (ii) a weak-fluctuation regime with a trivially located critical point and nontrivial exponents, and (iii) a highly non-trivial strong-fluctuation regime, for which we provide a full solution by finding the zeros of parabolic-cylinder functions. These analytical results are also verified by solving numerically the self-consistent equation in each case. Analogies with and differences from equilibrium critical wetting as well as nonequilibrium complete wetting are also discussed.Comment: 11 pages, 2 figure

    Simplified Langevin approach to the Peyrard-Bishop-Dauxois model of DNA

    Full text link
    A simple Langevin approach is used to study stationary properties of the Peyrard-Bishop-Dauxois model for DNA, allowing known properties to be recovered in an easy way. Results are shown for the denaturation transition in homogeneous samples, for which some implications, so far overlooked, of an analogy with equilibrium wetting transitions are highlighted. This analogy implies that the order-parameter, asymptotically, exhibits a second order transition even if it may be very abrupt for non-zero values of the stiffness parameter. Not surprisingly, we also find that for heterogeneous DNA, within this model the largest bubbles in the pre-melting stage appear in adenine-thymine rich regions, while we suggest the possibility of some sort of not strictly local effects owing to the merging of bubbles.Comment: 4 pages, 2 figure

    When can species abundance data reveal non-neutrality?

    Get PDF
    Species abundance distributions (SAD) are probably ecology's most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable

    Critical wetting of a class of nonequilibrium interfaces: A computer simulation study

    Full text link
    Critical wetting transitions under nonequilibrium conditions are studied numerically and analytically by means of an interface-displacement model defined by a Kardar-Parisi-Zhang equation, plus some extra terms representing a limiting, short-ranged attractive wall. Its critical behavior is characterized in detail by providing a set of exponents for both the average height and the surface order-parameter in one dimension. The emerging picture is qualitatively and quantitatively different from recently reported mean-field predictions for the same problem. Evidence is shown that the presence of the attractive wall induces an anomalous scaling of the interface local slopes.Comment: 7 pages, 8 figure

    Absorbing state phase transitions with a non-accessible vacuum

    Full text link
    We analyze from the renormalization group perspective a universality class of reaction-diffusion systems with absorbing states. It describes models where the vacuum state is not accessible, as the set of reactions 2A→A2 A \to A together with creation processes of the form A→nAA \to n A with n≄2n \geq 2. This class includes the (exactly solvable in one-dimension) {\it reversible} model 2A↔A2 A \leftrightarrow A as a particular example, as well as many other {\it non-reversible} reactions, proving that reversibility is not the main feature of this class as previously thought. By using field theoretical techniques we show that the critical point appears at zero creation-rate (in accordance with exact results), and it is controlled by the well known pair-coagulation renormalization group fixed point, with non-trivial exactly computable critical exponents in any dimension. Finally, we report on Monte-Carlo simulations, confirming all field theoretical predictions in one and two dimensions for various reversible and non-reversible models.Comment: 6 pages. 3 Figures. Final version as published in J.Stat.Mec

    Langevin equations for nonequilibrium phase transition

    No full text
    Contiene un resumen en castellanoTesis realizada en colaboraciĂłn con el Instituto Carlos I de FĂ­sica TeĂłrica y ComputacionalTesis Univ. Granada. Departamento de Electromagnetismo y FĂ­sica de la Materia. LeĂ­da el 27 del 4 del 200
    corecore