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RESEARCH ARTICLE
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Abstract
Species abundance distributions (SAD) are probably ecology’s most well-known empirical

pattern, and over the last decades many models have been proposed to explain their

shape. There is no consensus over which model is correct, because the degree to which dif-

ferent processes can be discerned from SAD patterns has not yet been rigorously quanti-

fied. We present a power calculation to quantify our ability to detect deviations from

neutrality using species abundance data. We study non-neutral stochastic community mod-

els, and show that the presence of non-neutral processes is detectable if sample size is

large enough and/or the amplitude of the effect is strong enough. Our framework can be

used for any candidate community model that can be simulated on a computer, and deter-

mines both the sampling effort required to distinguish between alternative processes, and a

range for the strength of non-neutral processes in communities whose patterns are statisti-

cally consistent with neutral theory. We find that even data sets of the scale of the 50 Ha for-

est plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect

deviations from neutrality caused by competitive interactions alone, though the presence of

multiple non-neutral processes with contrasting effects on abundance distributions may

be detectable.

Author Summary

In order to predict and mitigate the response of ecological communities to global change,
we need to understand the processes that allow multiple species to coexist in close proxim-
ity. A classic idea in Ecology is that species coexist because they occupy different “niches”.
However, random processes such as dispersal could also explain species coocurrence,
without invoking niche differentiation. “Neutral”models embody this idea, omitting niche
differentiation and assuming all species are identical. Such models are mostly statistically
consistent with the relative abundances of tree species in tropical forests, but statistical
procedures always contain an element of uncertainty and many other models could also
be consistent with a particular data set. We compute how strong the non-neutral processes
would need to be in order for their effect to be detectable in data sets of different sizes. We
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find that the largest ecological data sets currently available, such as the 50 hectare plot on
Barro Colorado Island in Panama, are not large enough to distinguish between neutral
and non-neutral models, unless multiple non-neutral processes are at work. This means
that other types of pattern need to be studied, or larger data sets collected, in order to un-
derstand the mechanisms behind forest biodiversity.

Introduction
The extent to which ecological processes can be inferred from macroecological patterns has
long been debated [1–4]. The appearance of common patterns in species abundance distribu-
tions (SADs) for different communities suggests that the same ecological mechanisms structure
these communities [5, 6]. However, it is now thought that many patterns describing communi-
ties are rather insensitive to these processes [7–11]. For example, empirical SADs are in many
cases found to be statistically consistent with Hubbell’s neutral theory [12–17], but this does
not mean that communities are truly neutral because non-neutral models can predict similar
[8–10, 18, 19] or even identical [4] patterns. This raises the question of whether anything can
be inferred from fitting it to SAD data [3, 4, 20].

Neutral theory has been criticized for the biological processes it omits, but non-neutral
models that give qualitatively or even exactly the same predictions can be equally artificial and
unrealistic [4, 18, 21]. Neutral theory has many virtues [22–24] and in many ways it is more
complete in scope than competing niche theories [25]. It describes community dynamics at the
individual level, treating births, deaths, and dispersal as stochastic processes. It is susceptible to
rigorous statistical tests, because unlike many other demographic models the likelihood of ob-
taining a particular community or sample can be computed exactly [26–30]. Even the contro-
versial neutral assumption that interactions between individuals do not depend on species
identity is inspired by biological reality; Hubbell observed that, in tropical forests, all species
compete for light—and, therefore, space [31]. This means that neutral theory should be a good
starting approximation for communities of sessile species that compete for a common resource,
such as space (e.g. tropical trees or coral reefs). More realistic models will include non-neutral
processes, such as interactions that depend on species identity [32, 33], but neutral theory can
act as a null model for assessing the weight of evidence for such processes.

Although the SAD may be rather insensitive to the introduction of non-neutrality, this does
not mean that it is identical for any kind of non-neutral effects [34]. While there may be pat-
terns or scales for which some processes are undetectable, e.g. due to central limit theorem-like
effect [19, 35, 36], strong interactions between individuals can structure communities and it is
in some cases possible to detect their existence from inspection of the SADs [3, 33, 34]. If a
data set is found to be consistent with neutral theory, we should therefore be able to infer that
some particular non-neutral processes are not present in that community, or at least are not
strong enough to produce detectable deviations from neutrality in a data set of this size.

In this paper, we present a power calculation for neutral theory. Our purpose is to estimate
an upper bound for the strength of non-neutral processes in tropical forest data sets [37–39]
that have been found to be consistent with neutral theory [13]. To do this, we fit the standard
neutral model (SNM) to data sets generated by a non-neutral model, and compute the proba-
bility of rejecting neutral theory. We test the neutral null hypothesis using a maximum likeli-
hood approach (using an exact expression [26] for the likelihood of a sample from the SNM),
where p-values are evaluated by a parametric bootstrap procedure.
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The power of a statistical test is defined as the probability that the null hypothesis is rejected
when it is indeed false. The power therefore depends on which alternative hypothesis is true. In
this paper, we focus on two classes of non-neutral processes: interspecific competition, and in-
trinsic (density independent) fitness differences between species. Interspecific competition is
one of the classic mechanisms that promote coexistence [33, 40, 41], whereas differences in fit-
ness represent the fact that the mean environmental conditions in a particular area of habitat
will tend to favour one species over another. These represent opposite ends of a spectrum of
possible non-neutral models, because symmetric interspecific competition tends to lead to
equal abundances among species, whereas intrinsic fitness differences tend to lead to highly
uneven abundances. While these are only two examples out of an infinite set of non-neutral
models, our method provides a blueprint for computing the detectability of any type of non-
neutral process.

Full details of our models are given in the Methods section. Our models are similar in struc-
ture to Hubbell’s standard neutral model (SNM), in that we consider stochastic population dy-
namics in a local community where strong density dependence regulates the total community
size to J individuals, coupled by immigration to a much larger metacommunity. We consider
two models of interspecific competition: one, which we shall denote HL, is a multi-species sto-
chastic Lotka-Volterra model similar to that studied by Haegemann and Loreau [33]; the
other, denoted by PC, has stochastic Ricker-like dynamics as studied by Pigolotti and Cencini
[42]. Our model of intrinsic differences in fitness, denoted by IF, assumes that the fecundity of
each species is a randomly generated variable. Each of our models has a single parameter that
determines how strong the non-neutral processes are. In model HL, parameter γ represents the
relative difference in strength between interspecific and intraspecific interactions, so that when
γ = 0 the dynamics are neutral whereas when γ> 0 coexistence is promoted. In model PC, pa-
rameter c determines the difference between inter- and intra-specific density dependence, so c
= 0 corresponds to neutral interactions and non-neutrality becomes stronger as c increases. In
model IF, the fitness of each species is generated from a Gamma distribution with shape factor
1/k, so that when k = 0 all fitnesses of the species are the same and the local dynamics
are neutral.

As in the SNM, local diversity is maintained by a fractionm of all recruits being immigrants
from a metacommunity with fixed relative species abundances. The proportion of immigrants
of different species follow their relative abundance in the metacommunity. We consider two
cases: in case LOGS the metacommunity is described by a logseries with fundamental diversity
constant θ, and in case EVEN the metacommunity has ST species which all have equal abun-
dance. A logseries distribution can arise from many processes, including but not restricted to
neutral dynamics [43]. We considered the even metacommunity because it represents a meta-
community limit of our local community dynamics, and as a result represents a contrasting, ex-
tremely non-neutral, limit to the logseries. When coupled to the LOGS metacommunity, each
of our models should be equivalent to the SNM when the local dynamics are neutral (when γ,
c, or k equals zero). As the dynamics are made more non-neutral, the deviations from the SNM
should become stronger, and we expect the power of the test of the neutral null model to in-
crease. However, when coupled to the EVEN metacommunity, the models are not equivalent
to the SNM even when the local dynamics are neutral. In this case the power of the test could
be high even if the local dynamics were neutral, though if J is very small the statistical power
could still be low.

Our study consists of two parts. First, we explore how the parameters of our models affect
the probability of detecting non-neutral processes. For a real community we do not know a pri-
ori the appropriate parameters to use, so we need to choose the parameters so that the alterna-
tive model gives comparable patterns to the empirical data. In the second part of our study, we
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estimate the power of tests of neutrality for empirical data from three New and Old World
tropical forests, including Barro Colorado Island (BCI) in Panama. Our power calculation pro-
vides an estimate of the smallest sample size that is needed to detect non-neutrality of known
intensity, and of the range strengths of non-neutrality needed to reject neutrality for a given
species abundance data set.

Results

Power calculation for fixed non-neutral model parameters
The strength of non-neutral processes affects the sample size that is required in order to have a
good chance of rejecting the neutral hypothesis (see Fig. 1). When interspecific interactions are
non-neutral (models HL and PC, top and middle row of Fig. 1), we see a simple pattern: as the
strength of non-neutral processes is increased (γ or c increases from zero), the power of the test
increases. In addition, for these models the power of the test increases as the local community
size J is increased. This shows that any strength of non-neutrality, however weak, can in princi-
ple be detected provided the data set is large enough. However, the system sizes needed to give
a significant power may be too large to be empirically accessible when local dynamics are near-
ly neutral (γ or c close to zero). For the LOGS metacommunity, and when the local dynamics
are strictly neutral (γ = 0 for model HL or c = 0 for model PC), the models are equivalent to the
SNM, and the power is equal to the threshold p-value for statistical significance (0.05 in our
study). However, for the EVEN metacommunity the power can be higher than this threshold
even when the local dynamics are neutral, because the immigration process makes the model
no longer equivalent to the SNM (though this is not visible for the relatively small values ofm
used with models HL and PC in Fig. 1)

However, the patterns are rather more complicated for model IF (bottom row of Fig. 1). The
power is again low when the local dynamics are neutral (k! 0) and the metacommunity fol-
lows a logseries (bottom left panel). However, the power does not increase monotonically as
the non-neutrality parameter k is increased. This is because strong selection rapidly leads to
dominance by a single species [44], especially in small communities, which is a pattern that can
also arise from the SNM if the immigration parameterm! 0. Moreover, the power no longer
increases monotonically when the local community size J increases; for example the power for
J = 2000 in Fig. 1, bottom left, is higher than for J = 200, 5000, or 20000. This appears counter-
intuitive because statistical power should increase monotonically with sample size. However, J
represents more than just the amount of data available: it is a parameter which interacts non-
linearly with the model dynamics. In the IF model, for instance, it determines whether the dy-
namics are in the strong or weak selection limit, and it also plays a nonlinear role in the SNM.

To illustrate this effect, we can consider the limit k!1 of model IF/EVEN. In this special
case, there is a single dominant species, relative to which all other species have zero fitness. All
local recruits will therefore be of the dominant species, though other species will also be present
due to immigration. This case is particularly simple because the species identity of each indi-
vidual in the local community is the dominant species with probability 1−m(1–1/ST), and each
of the other species with probabilitym/ST. We find that the power of the test of neutrality is
low at small J, increases to a maximum at an intermediate value of J, and then decreases as J in-
creases again (Fig. 2). Because, for the non-neutral model in this limit, J is nothing more than a
sample size—a community of size 2J can be constructed by adding two communities of size J—
this non-monotonic relationship between power and Jmust be due to the nonlinear role played
by J in the community dynamics in the neutral null model.

The two other model parameters (immigration rate and diversity of the metacommunity)
also strongly affect the chance of rejecting the neutral hypothesis. The parameterm describes
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Fig 1. Probability of rejecting the neutral null hypothesis as a function of the strength of non-neutral processes. Top row: HL model; middle row: PC
model; bottom row: IF model. The local dynamics are strictly neutral in the limits to γ = 0, c = 0, or k = 0 respectively. The panels on the left assume a logseries
metacommunity with biodiversity parameter θ; panels on the right assume a community with ST species with equal abundances. Different colours/symbols
correspond to different local comunity sizes, as follows: Black circles J = 200; red multiplication signs J = 2000; cyan plus signs J = 1000; magenta diamonds
J = 5000; blue triangles J = 20000. The other paramerers are: HL/LOGS: θ = 50,m = 10−4; HL/EVEN: ST = 2000,m = 10−4; PC/LOGS: θ = 50,m = 10−4; PC/
EVEN: ST = 200; IF/LOGS: θ = 100,m = 0.1; IF/EVEN: ST = 100,m = 0.1.

doi:10.1371/journal.pcbi.1004134.g001
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the probability that a newly born individual in the local community is an immigrant from the
metacommunity, so the local community resembles the metacommunity more closely asm is
increased; whenm = 1, the local community is effectively a random sample from the metacom-
munity and local dynamics are irrelevant. Increasing θ in model LOGS, and increasing ST in
model EVEN, lead to more diverse metacommunities, and as a result tend to increase diversity
in the local community.

For models HL and PC, either increasingm (top and middle rows Fig. 3), or increasing the
diversity of the metacommunity (either increasing θ or ST as appropriate, top and middle rows
Fig. 4), reduces the power of the test. It is clear why increasingm should reduce the power for
models HL/LOGS and PC/LOGS, because the local community is then more like a logseries,
and hence more like the SNM. The power changes very little betweenm = 10−4 andm = 10−3,
reflecting the much greater importance of local dynamics on the patterns whenm is small. It is
less clear why increasing θ should reduce the power of the test, though it is worth noting that
both increasing θ and increasingm have the effect of increasing the local richness. Increasing
m or ST in models HL/EVEN and PC/EVEN also increases the local richness, and while it is
not obvious why this should make the model resemble the SNM, we find that it also reduces
the power of the test.

For model IF, the effect of bothm and the metacommunity diversity on the statistical power
can be non-monotonic (bottom row, Figs. 3 and 4). For model IF/LOGS when k� 10−3, for

Fig 2. Probability of rejecting the neutral null hypothesis as a function of local community size J for model IF/EVEN in the limit k!1. Here,m = 0.1
and ST = 100. Error bars are 95% Jeffreys confidence intervals.

doi:10.1371/journal.pcbi.1004134.g002
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Fig 3. Power of rejecting the neutral null model as a function of the strength of non-neutrality, for different rates of immigration from the
metacommunity. Back circles:m = 10−4, red triangles:m = 10−3; green plus signsm = 0.01; blue multiplication signsm = 0.03; cyan diamonds:m = 0.1. For
HL/LOGS and PC/LOGS θ = 50; for IF/LOGS θ = 1000; for HL/EVEN, PC/EVEN and IF/EVEN ST = 200. In all cases J = 2000.

doi:10.1371/journal.pcbi.1004134.g003
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Fig 4. Probabilty of rejecting the neutral null model as a function of the strength of non-neutrality, for different levels of diversity in the
metacommunity. The parameters are: for HL/LOGS:m = 10−3 and θ = 25 (blue multiplication signs), θ = 50 (red triangles), θ = 200 (green plus signs); for
PC/LOGS,m = 10−3 and θ = 10 (black circles), θ = 50 (red triangles), θ = 200 (green plus signs); for HL/EVEN and PC/EVEN,m = 10−3 and ST = 20 (black
circles), ST = 50 (red triangles), ST = 500 (green plus signs); for IF/LOGS,m = 0.1 and θ = 10 (black circles), θ = 100 (red triangles), θ = 1000 (green plus
signs); for IF/EVENm = 0.1 and ST = 50 (black circles), ST = 100 (red triangles), ST = 200 (green plus signs). In all cases J = 2000.

doi:10.1371/journal.pcbi.1004134.g004
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instance, for θ = 1000 the power form = 0.03 is higher than form = 0.1 or 0.01 (bottom left,
Fig. 3); form = 10−3 the power for θ = 100 is higher than for θ = 10 or 1000. On the whole, how-
ever, bothm and the community diversity tend to increase the power of the test, which is the
opposite effect from what is seen in models HL and PC. This is because the local dynamics
tend to lead to monodominant states, which as explained before are indistinguishable from the
SNM even if their origin is highly non-neutral. Processes which increase the local diversity
allow the non-neutral features of this model to be better detectable.

It is interesting to note that the shape of the relationship between power and c for model PC
in Fig. 1, middle row seems to be independent of J. This would be a very useful relationship if it
were found to hold in general, because power calculations for large J are very expensive compu-
tationally and this would enable us to estimate power by varying c as a proxy for J. We find,
however, that this behaviour is not preserved for other parameter values. We did not find any
simple way to summarise the dependence on model parameters evident in Figs. 1, 3, and 4 that
would enable us to estimate the power outside of the parameter range we tested explicitly.

Power calculation for large forest surveys
Our aim is to explore the detectability of non-neutrality in data sets of different sizes. SNM has
been found to be statistically consistent with several large tropical forest data sets [12–17], but
this does not mean that SNM is an exact description so a power calculation gives us, in princi-
ple, an upper bound for the degree of non-neutral processes in these systems. We do not know
a priori the appropriate non-neutral parameter values for these forests, but we can choose
model parameters so that the model data match a number of features of the empirical data.
Specifically, we chose model parameters so that the community size, mean species richness,

Table 1. Fitted parameters for CTFS data sets and probability of rejecting the neutral null hypothesis,
for model PC/LOGS.

Forest c (θ, m) Power (Jeffreys 95% confidence interval)

BCI 0.1 (40.04, 0.2398) 0.00 (0.00–0.03)

1 (38.44, 0.3256) 0.02 (0.00–0.04)

10 (36.15, 0.600) 0.00 (0.00–0.05)

Pasoh 0.1 (183.2, 0.04686) 0.00 (0.00–0.03)

1 (168.1, 0.06710) 0.01 (0.00–0.03)

10 (138.5, 0.1708) 0.00 (0.00–0.03)

Lambir 0.1 (219.4, 0.2641) 0.01 (0.00–0.05)

1 (217.3, 0.2515) 0.01 (0.00–0.03)

10 (205.0, 0.4031) 0.01 (0.00-0.05)

doi:10.1371/journal.pcbi.1004134.t001

Table 2. Fitted parameters for CTFS data sets and probability of rejecting the neutral null hypothesis, for model PC/EVEN.

Forest c (ST, m) Power (Jeffreys 95% confidence interval)

BCI 0.01731 (1, 0.0008181) 0.10 (0.05–0.17)

Pasoh 0.1 (1154, 0.00353) 0.06 (0.03–0.10)

0.7523 (1, 0.001876) 0.20 (0.13–0.29)

Lambir 0.1 (4506, 0.003329) 0.02 (0.00–0.05)

0.2858 (1, 0.002771) 0.01 (0.00–0.05)

The cases where ST = 1 correspond to the largest values of c for which the model could reproduce the three characteristics of the empirical data.

doi:10.1371/journal.pcbi.1004134.t002
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and mean Shannon diversity of sample data sets from the non-neutral model are the same as in
the empirical data set. More details are given in the Methods section.

We estimated the power of neutrality for empirical data similar to three data sets collated by
the Centre for Tropical Forest Science (CTFS, data available online at http://www.ctfs.si.edu).
The determination of appropriate model parameters, and the power calculation itself, is very
computationally expensive, so we performed this for three candidate strengths of non-neutrali-
ty, and for models PC and IF only. The results are summarised in tables 1–4.

For model PC/LOGS, we find that the power of the test of neutrality is extremely low when
the model parameters are chosen to match three statistics of the empirical data, whatever the
strength of the non-neutrality (Table 1). This is because the non-neutral process tends to in-
crease the evenness in the community, so when c is increased the fitted immigration rate needs
to be increased in order to match the Shannon index in the empirical data. In other words, the
parameters of this model need to be close to neutral (either c small, orm close to 1) in order to
agree with the empirical data, so the power of the test is low.

By contrast, for model IF/EVEN the power of the test is very high for model parameters that
reproduce the characteristics of the empirical data (Table 4), even for the smallest strength of
non-neutral processes we considered. This is because both the metacommunity and the local
dynamics are non-neutral, but the local dynamics tends to lead to very uneven (i.e. monodomi-
nant) communities while the metacommunity tends to increase the evenness of the communi-
ty. These processes need to be in balance in order for the model to match the diversity and
richness of real data, and as a result the fitted model is far from neutral.

Table 4. Fitted parameters for CTFS data sets and probability of rejecting the neutral null hypothesis,
for model IF/EVEN.

Forest k (ST, m) Power (Jeffreys 95% confidence interval)

BCI 10−4 (232, 0.0166) 1 (0.975–1)

0.01 (232, 0.134) 1 (0.975–1)

1 (232, 0.517) 1 (0.975–1)

Pasoh 10−4 (675, 0.0232) 1 (0.976–1)

0.01 (672, 0.181) 1 (0.976–1)

1 (672, 0.648) 1 (0.976–1)

Lambir 10−4 (1018, 0.0236) 1 (0.981–1)

0.01 (1006, 0.186) 1 (0.976–1)

1 (1006, 0.650) 1 (0.975–1)

doi:10.1371/journal.pcbi.1004134.t004

Table 3. Fitted parameters for CTFS data sets and probability of rejecting the neutral null hypothesis,
for model IF/LOGS.

Forest k (θ, m) Power (Jeffreys 95% confidence interval)

BCI 10−4 (40.70, 0.1888) 0.00 (0.00–0.03)

10−4 (57.50, 0.02441) 0.02 (0.00–0.06)

Lambir 10−4 (221.0, 0.2394) 0.01 (0.00–0.05)

10−4 (361.5, 0.02922) 0.01 (0.00–0.05)

For these forests with k = 10−4, there were two distinct parameter sets that match the characteristics of the

empirical data. No solutions were found for k � 0.01. Pasoh is not included because no parameter sets

consistent with the empirical data were found with k � 10−4.

doi:10.1371/journal.pcbi.1004134.t003
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For model PC/EVEN, both the local dynamics and the metacommunity tend to lead to even
abundance distributions, and as a result it was only possible to find parameters so the model
matches the empirical data when the strength of the non-neutrality was sufficiently weak
(Table 2). The largest value of c for which the model is consistent with the empirical forest data
was found to be when ST!1, in which limit the immigration process behaves effectively as a
speciation process. It was found that when the model was fitted to the Pasoh data with c =
0.7523, the probability of rejecting the neutral null hypothesis was 0.20. The power of the test was
much lower when c = 0.1, and was always low when the model was fitted to the Lambir data. The
model could not reproduce the richness and Shannon diversity of the BCI data set unless c< 0.1.

For related reasons, the probability of rejecting the neutral null model was low for model IF/
LOGS when fitted to the empirical data. Here, both the non-neutral local dynamics and the
metacommunity tended to lead to highly uneven abundance distributions, and as a result the
Shannon index produced by the model was very low unless k was small. It was not possible to
fit the model to Pasoh when k� 10−4, or to BCI or Lambir when k� 0.01. While there were
two discrete parameter sets each that matched the richness and evenness of Pasoh and Lambir
(one where θ was low andm high, and one where θ was higher andm lower), the power of the
test with these parameters was always low.

Discussion
Our power calculation shows that, in principle, non-neutrality would be detectable in large
enough SAD data sets or when non-neutral processes are strong enough (see Fig. 1). This con-
tradicts the suggestion that the SAD for large samples will approach the same canonical form,
and that larger sampling efforts would consequently be futile [35]. Indeed, the SNM has been
rejected using SAD data from very large phytoplankton communities [45], and we found that
the SNM could also be rejected for the tropical tree species abundances of Yasuni National
Park (see Methods). Our results also show that independent niches can be distinguishable from
neutrality, contrary to suggestions by Chisholm and Pacala [36], because the test is most pow-
erful when the species in our model HL undergo independent stochastic logistic dynamics (i.e.
when γ approaches 1, see Fig. 1). Our HL model with γ = 1 differs from the independent-niche
models of Chisholm and Pacala [36] and Haegeman and Etienne [19] by having strong intra-
specific density dependence, so the marginal distributions are very different from the SNM.

However, we conclude that tropical forest abundance data sets, on the scale collected by
CFTS, might not be large enough to detect even strongly non-neutral interspecific interactions.
As shown in Tables 1 and 2, statistical power remains very low as c (the parameter measuring
the intensity of inter- versus intra-specific competition) is varied. This is because the model pa-
rameters required to give the same richness and evenness in the empirical data are themselves
close to neutral, either because c is small or because the metacommunity follows a logseries dis-
tribution andm is close to 1 (in which case the local community strongly resembles a neutral-
like metacommunity). This result is in agreement with the good fits of some species-indepen-
dent neutral models to a large number of SADs for very diverse communities [46]. It is interest-
ing to note that Volkov et al. [47] estimated that interspecific species interactions are many
times smaller than intraspecific interactions in tropical forests, but we cannot apply their re-
sults to our models because they did not include immigration from a metacommnunity.

On the other hand, we did find that a combination of non-neutral processes producing op-
posing effects on the local community led to high statistical power for parameters consistent
with empirical CTFS data. In model IF/EVEN, intrinsic local fitness differences tend to de-
crease richness and evenness, whereas the even local community increases richness and even-
ness. This means that both processes can be strong while still producing levels of richness and
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abundance consistent with the empirical data. Du et al. [10] noted that non-neutral processes
which have opposing effects on relative abundance distributions can lead to abundance distri-
butions that resemble neutral theory, but our investigation shows that they can still be distin-
guished from SNM in some cases. We can therefore conclude that such a combination of
strongly non-neutral processes is not present in data sets for which the SNM is not rejected,
such as the three CTFS forests we studied in this paper.

The power of a statistical test generally depends on three factors: first, the sample size; second,
statistical significance as measured by the threshold p-value used to assess significance; and third,
the effect size, which quantifies departures from the null hypothesis. In our analysis, effect size is
encoded in the parameter values of the non-neutral model under consideration (respectively, γ, c,
and k for models HL, PC, and IF). When density dependence is non-neutral (models HL and
PC), power increases as interactions become more non-neutral (see Fig. 1). However, for non-
neutral intrinsic fitness (model IF) the power of the test depends non-monotonically on k (Fig. 1,
bottom row). These patterns can be understood from the effect that these parameters have on di-
versity patterns—strong non-neutrality (k large) in model IF leads to monodominance, which is
indistinguishable from the neutral model with strong dispersal limitation (m very small).

Our results highlight the fact that the parameter J plays a more complicated role for these
models than the sample size in standard power calculations, because the power does not always
increase monotonically with J (Fig. 2). In most standard statistical tests, a “sample” consists of a
number of statistically independent measurements. In an ecological community (or a model
thereof), the individuals are not statistically independent because of their interactions (whether
within or between species). This is true even in the SNM: an equilibrium community of size J can
be generated as a hypergeometric subsample of a community with larger J [48], but the individu-
als are not independent because this represents sampling without replacement. This means that
the community size J plays a nonlinear role and is not a straight analogue of the sample size in
standard statistical tests, so statistical power does not necessarily increase monotonically with J.

The dependence on other parameters can also be non-monotonic; for example, for meta-
community model LOGS the local community will resemble a log series (and therefore be in-
distinguishable from the SNM) in the limitm! 1, but the power does not decrease
monotonically withm for model IF/LOGS (see Fig. 3). Increased metacommunity diversity de-
creases statistical power for models HL and PC (Fig. 4), which echoes the observation that
higher local diversity leads to SADs that look more like those created by the SNM even in the
presence of niche structuring [19, 36]. This suggests that it might be easier to quantify non-
neutral interactions in less diverse forests [19]. However, this is not true for all types of non-
neutral processes: for model IF the power increases when the metacommunity diversity
is increased.

Unfortunately, we were unable to find any general rules to allow us to extrapolate the power
calculation outside of the parameter range we simulated. The power calculations in this paper
are very computationally expensive, and it would be unfeasible for us to repeat them for J
much larger than* 30000 individuals. Moreover, to do this we would need to know how pa-
rameters γ (for model HL) and c (for model PC) are affected by J. Our notation tacitly assumes
that each species is sensitive to mean population densities over the whole community, but in
real systems, where individuals of a species are clumped together, an individual will only inter-
act with nearby individuals so the values of γ and cmight depend on J. We are therefore unable
to estimate the factor by which CTFS data sets would have to be enlarged for us to distinguish
model PC from the SNM.

In this paper, we have analysed a range of non-neutral scenarios: non-neutral density de-
pendence affecting mortality or recruitment; non-neutral differences in intrinsic fitness; neu-
tral-like or extremely non-neutral metacommunity. These processes have contrasting effects
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on the SAD, so arguably represent the extremes of a spectrum of possibilities. Nevertheless,
there are many types of community processes which are not encompassed by our models. For
example, trophic or mutualistic interactions are not present in our models and should lead to
very different patterns of abundance, though these are more likely to be relevant in other sys-
tems than the tropical forests on which we focus. Similarly, dynamics that lead to multimodal
SADs should be relatively easy to distinguish from neutrality [34, 49]. We have made a number
of simplifying assumptions to keep the number of parameters manageable, but our framework
could still be used to perform a power calculation for any type of non-neutrality that can be in-
corporated in a simulation model. It would also be preferable to perform power calculations
for spatially explicit models, which represent a more realistic dispersal process and can readily
be simulated [50]; however, for our test we would need a likelihood for the spatially explicit
neutral model, which is not currently available.

Our results have refined as well as quantified in a statistical sense the suggestion [3, 36, 51,
52] (but see also ref. [53]) that SAD data do not have sufficient resolving power to assess the
importance of non-neutral processes in structuring forest communities. Our study shows that
even large-scale tropical forest data sets are not large enough, or are too diverse, to detect non-
neutral species interactions using the SAD alone. However, we would not expect to see a good
fit to the SNM if these forests contained multiple processes with opposing effects on richness
and evenness. Patterns that include more information, such as multiple samples [27], spatio-
temporal changes [54, 55] or phylogenetic data [56, 57], are likely to be much more revealing
about the processes that generated them. Provided it is possible to compute the likelihood for
obtaining such patterns in a neutral model, our approach can be adopted to calculate the sam-
pling effort needed to detect and quantify non-neutral processes, and understand the forces
that structure communities.

Methods
This section describes (i) our non-neutral alternative models, and methods for generating sam-
ples from them; (ii) our method for testing whether to reject the neutral null hypothesis for a
particular data set; (iii) the method for combining (i) and (ii) to give a power calculation; (iv)
the method for estimating model parameter values in order to estimate the statistical power of
particular experiments.

Our non-neutral models are similar in structure to the standard neutral model (SNM), i.e.
Hubbell’s metacommunity-local community model [26, 31, 48], but adapted to include non-
neutral processes. As with the SNM, strong local density dependence is assumed to keep the
local community size fixed at J individuals. A fractionm of all recruits immigrate from a “meta-
community”, which is assumed to be large enough for the relative abundances (Pi for the i’th
species) to be effectively static in time. This immigration prevents drift to local monodomi-
nance. The models differ in the relationship between the local abundances and the birth and
death rates, in the relative abundances in the metacommunity, and in whether the dynamics
are syncronous or sequential in time.

Local model HL
Our local community model “HL” resembles one used by Haegeman and Loreau [33]. It can be
thought of as a multispecies stochastic Lotka-Volterra competition model with immigration,
where a single parameter controls the relative strength of inter-and intra-specific interactions.
Our model differs from that of Haegeman and Loreau [33] in that each death event is immedi-
ately followed by a single birth event so that the local community size remains constant. We
consider a local community consisting of J individuals, each of which has a species identity
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which is an integer between 1 and ST. Mortality is affected by inter- and intra-specific density
dependent mortality, so that the probability that the next individual that dies has species iden-
tiy i is proportional to

MiðfnjgÞ ¼ ni

J
þ ð1� gÞ

P
j6¼inj

J

� �
ni

J

¼ ð1� gÞ þ g
ni

J

� �
ni

J

ð1Þ

where ni is the number of individuals of species i in the community, so that J ¼ PST
j¼1 nj. In the

neutral case, γ = 0, the mortality rate is the same for all individuals irrespective of species, but
when γ> 0 per capita mortality is greater for more abundant species.

The dynamics proceed by choosing the individual that dies next, so that the probability that
the dead individual has species identity i is proportional toMi. A recruit is then chosen to be of
species i with probability

FiðfnjgÞ ¼ ð1�mÞ ni

J
þmPi; ð2Þ

where Pi is the relative frequency of species i in the metacommunity. One time step consists of
J of these elemental update steps.

If γ = 0, the mortality rate is independent of species identity, so species interactions are neu-
tral; when 0< γ� 1, niche differentiation tends to promote species coexistence [33]. The
model is ill-defined when γ> 1, since that would lead toMi< 0.

At first sight, it might appear that a more general model could be obtained by using the
functional forms in Haegeman and Loreau [33], which allow for density independent as well as
density dependent mortality. The rates in Equation (13) of that paper correspond in our nota-
tion to

Mi ¼ r�ni þ ðrþ � r�Þni

aJ þ ð1� aÞni

K 0 ð3Þ

Fi ¼ rþni þ mSTPi; ð4Þ

where bothMi and Fi are now rates rather than probabilities (no longer normalised so that
they sum to unity) and we have introduced the factor ST Pi to allow the immigration rate to dif-
fer between species. Here, r+ and r− denote respectively the rates of density-independent birth

and mortality, K0 plays the role of a carrying capacity, and α tunes how neutral the interactions
are are (neutral when 1; non-neutral competition for 0< α< 1; mutualistic for α< 0). A little
algebra shows that Equations (3) and (4) are equivalent to Equations (1) and (2) (up to overall
prefactors that do not affect the sequence of processes in the simulation) with the choice of pa-
rameters

g ¼ 1

1þ r�K
0 þ ðrþ � r�ÞJa

ðrþ � r�ÞJð1� aÞ

m ¼ 1

1þ rþJ
mST

:

The values of these parameters is within the range for which our model is defined (0<m� 1,
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0� γ� 1) provided r+ > r− (which is assumed to be the case by Haegeman and Loreau [33] in

order for there to be a non-trivial equilibrium) and� r�K 0
ðrþ�r�ÞJ � a � 1. Therefore, our model

defined by Equations (1) and (2) captures the apparently more general density dependence de-
fined in Equations (3) and (4), except for the case of strongly mutualistic interactions.

Local model PC
Our second model of non-neutral species interactions is a derivative of that of Pigolotti and
Cencini [42]. As in model HL, we assume that interspecific interactions are weaker among het-
erospecifics than among conspecifics, but in model PC we assume a Ricker-like functional
form that acts on fecundity so that the number of local propagules of species i 2 {1, . . ., ST} is
/ ni exp(−ani − b∑i 6¼ j nj), where nk is the local abundance of species k and a and b(< a) are
constants. The fraction of local propagules that are of species i is then

LPC
i ¼ nie

�ani�b
P

j 6¼i
nj

PST
k¼1 nke

�ank�b
P

j 6¼k
nj

¼ nie
�cni=JPST

k¼1 nke�cnk=J
;

where c = J(a − b). If the interactions are sensitive to the average local density of the different
species, i.e. all species are spread throughout the community, then for the same pool of species
we expect c to be independent of J. Spatial effects could lead to a focal species only being sensi-
tive to the dynamics of nearby species, in which case the effective value of c would depend on J,
although this can only be modelled correctly using a spatially explicit model.

Because a fractionm of recruits are immigrants from the metacommunity, the probability
that a new recruit is of species i is

Ri ¼ mPi þ ð1�mÞLPC
i : ð5Þ

In this model, we assume that the generations are discrete and non-overlapping: at each time-
step, we compute the Ri from the current configuration, and generate a new configuration
using

fnig � multinomialðJ; fRigÞ:

We do this for the sake of computational efficiency: using a multinomial pseudo random num-
ber generator when the local community size is of the order of J* 10000 a full system update
of this synchronous model is orders of magnitude quicker than for the sequential update
model. Sequential updating (as in model HL above) is a more faithful biological description of
triopical forest dynamics, but it is known that in the neutral limit the sequential model (Moran
process) and the synchronous model (Wright-Fisher process) give indistinguishable equilibri-
um statistics for the large community sizes we are interested in. The syncronous model is there-
fore well suited to our goal of exploring the detectability of departures from neutrality. The
only circumstances where the synchronous model behaves qualitatively differently from the se-
quential one is where the Ricker-like dynamics tend to lead to limit cycles or chaos, but that
does not affect the results in this paper because we always choose c< 2ST (see Metacommunity
model EVEN below).
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Local model IF
Interspecific interactions, as implemented in models HL and PC, could be interpreted as repre-
senting environmental variability within the community: each species has its own preferred mi-
crohabitat, and as a result competes less with heterospecifics (which occupy neighbouring but
different microhabitats) than with conspecifics. By contrast, model IF could be interpreted as
considering environmental variability between communities. In any given local community,
each (out of a total number ST) species has a different intrinsic fitness fi, different from the
other species and different from its intrinsic fitness in other commuities. Our model introduces
intrinsic fitness differences in a similar way to Chesson andWarner [58], though our model is
otherwise different because our fitness differences do not fluctuate in time and our dynamics
are stochastic rather than deterministic.

For each realisation, we generate the fi from a Gamma distribution with mean shape factor
1/k, so that k1/2 is the coefficient of variation among the fitnesses, and all the fitnesses are equal
when k! 0. The fraction of local propagules that are of species i is then

LIF
i ¼ finiPST

k¼1 fknk

;

and the probability that a recruit is of species i is

Ri ¼ mPi þ ð1�mÞLIF
i :

As was the case for model PC, for computational efficiency we assume discrete generations,
and simulate the model using a multinomial pseudorandom number generator with probability
vector {Ri}.

Metacommunity model LOGS
We assume that the relative immigration rates of different species reflect their abundance in a
wider metacommunity. Following the SNM, in model LOGS we assume that this abundance
distribution follows a Fisher logseries with diversity parameter θ. This is often a good descrip-
tion of empirical data, and can arise from several models of community dynamics including
Hubbell’s neutral model [31, 59]. Note that the metacommunity represents the pool from
which immigrants can be drawn, which could comprise many disparate communities. There-
fore, the metacommunity does not necessarily correspond to the large-J limit of a single local
community model. This means that one reasonable scenario is that the metacommunity fol-
lows a canonical form form due to averaging over very large scales [35], even when the local dy-
namics are non-neutral.

In metacommunity model LOGS we use the distribution introduced by Ewens [60] to give
the number fM of species in the metacommunity with relative abundance x within the interval
(x; x + dx).

fMðxÞdx ¼ y
x
ð1� xÞy�1dx: ð6Þ

This distribution is a continuum form of Fisher’s log-series that is appropriate when sampling
from an effectively infinite metacommunity [14]. In practice, we use this distribution to simu-
late from a very large metacommunity containing ST species; our full sampling algorithm is de-
scribed in S1 Text. The results in this paper are for ST = 2000, which is large enough to be
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effectively infinite (i.e. a choosing a larger ST did not have a perceptible effect on community
statistics or the power of the test of neutrality, but did increase the duration of the simulation).

Metacommunity model EVEN
As explained above, the logseries is a reasonable candidate metacommuity model even when
local community dynamics are non-neutral. However, it is also the metacommunity model in
the SNM, so we want to consider the possibility that non-neutral processes are visible in the
metacommunity as well. In our EVEN metacommunity model, there are ST species with equal
relative abundance, Pi ¼ 1

ST
. This distribution has been used in previous modeling studies of

neutral and non-neutral community dynamics [33, 54, 61, 62], though it has little empirical
support. It is appropriate to use this distribution in our study because, as we shall show, it rep-
resents a metacommunity limit of our non-neutral local community models.

The HL model is a form of stochastic multi-species Lotka-Volterra model, so its large-J limit
is described by differential equations. When 0� α< 1, this has a stable equilibrium with ni

J
¼

1
ST
for all i.

The PC model is a form of Ricker map. When J is large, the multinomial distribution be-
comes sharply peaked around its mean value, so from Equation (5) (for vanishingm) the dy-
namics of ri ¼ ni

J
follows

riðt þ 1Þ ¼ riðtÞe�criðtÞP
krkðtÞe�crkðtÞ

:

A standard stability analysis shows that the equilibrium ri ¼ 1
ST
is stable provided cST < 2; for

higher values of c the community displays limit cycles or chaos.
In model IF, the community tends to be dominated by the species that has the highest fit-

ness. However, the metacommunity represents an aggregate of many independent local com-
munities, and we expect different species to dominate in different communities. The model
assigns fitnesses independently at random to the different species, so we expect each species to
have the same overall relative abundance 1

ST
in the metacommunity.

Therefore, the EVEN metacommunity model represents one metacommunity limit of our
local community models. Other metacommunity models could be obtained by taking the limit
in different ways. For instance, if parameter c in model PC depends on J and approaches zero
sufficiently rapidly in the limit J!1, then the metacommunity limit would be neutral and
follow the same Ewens distribution as model LOGS. If the fitnesses in model IF were not i.i.d.
random variables, but rather different species had different mean fitnesses, then the metacom-
munity would have a different, uneven distribution. While there is an infinite variety of possi-
ble metacommunity distributions, the EVEN metacommunity represents the most contrasting
distribution to the logseries, in the sense that it has the maximum Shannon diversity index for
a given species richness while the logseries is a very uneven distribution. It also has the advan-
tage of being characterised by a single parameter (ST), whereas other commonly-used distribu-
tions (e.g. the lognormal) generally require two parameters.

Testing the neutral null model
In order to quantify whether a particular data set is consistent with neutral theory, we adopt a
maximum likelihood approach together with a parametric bootstrap as used by Walker and
Cyr [45] and Rosindell and Etienne [63]. To calculate the p-value of our test, we compare the
value of a test statistic for the test data set with values of the test statistic for data sets generated
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by the null model. We choose the maximized likelihood of the neutral model as our test statis-
tic. The likelihood L(Xjm, θ) that the neutral model would generate a data set X, for parameters
(m, θ) is computed using the exact formula derived by Etienne [26]. We use code based on
Tetame (http://chave.ups-tlse.fr/projects/tetame.htm), an efficient implementation in C++ of
Etienne’s formula that was developed by Jabot et al. [64]. We have ported the Tetame code to
C, and adapted it so it can be loaded as a dynamic library in R using the .C() function.

The hypothesis test consists of the following steps:

1. For a test data set XT, we find the maximum likelihood parameter estimates (mMT, θMT), i.e.
the set of parameters for which L(XTjm, θ) takes its largest value, L(XTjmMT, θMT), the maxi-
mum likelihood estimate.

2. Generate a large number u (in this study, u = 1000) of sample data sets from a neutral
model with parameters (mMT, θMT), using an Urn algorithm [14, 26].

3. For the i’th sample neutral data set, compute the corresponding maximum likelihood esti-

mate parameter set ðmi
MN ; y

i
MN Þ and maximum likelihood LðX i

N j mi
MN ; y

i
MN Þ using the

same procedure as used for XT.

4. The p-value for the test is the fraction of neutral data sets whose maximum likelihood is
lower than the maximum likelihood for the test data set, i.e. p is estimated by:

p ¼ 1

u

Xu

i¼1

x LðXi
N jmi

MN ; y
i
MNÞ � LðXT jmMT ; yMTÞ

� �
; ð7Þ

where ξ is the step function (ξ is equal to 1 if its argument is positive and 0 otherwise).

5. The neutral model is rejected if the p-value is less than the chosen threshold for statistical
significance, which we take to be 0.05.

Statistical power calculation for fixed non-neutral model parameters
The power of a statistical test is defined as the probability that the null hypothesis is rejected
when it is indeed false. The statistical power can only be quantified by specifying an explicit
model to represent the alternative hypothesis. The power can be computed by simulating many
data sets from the alternative model, and performing a test of the null hypothesis on each data
set, as explained above. The power is the fraction of cases for which the null hypothesis is re-
jected. A Type II error is defined as the failure to reject the null hypothesis when the alternative
hypothesis is true, so the power is equal to 1 − β, where β is the probability of Type II errors.

The power of a test will depend on the magnitude of the deviation from the null hypothesis
—the so-called effect size—and on the quality of the data at hand, typically, sample size. When
coupled to the LOGS metacommunity, our models are equivalent to the SNM in the limit
where the non-neutral parameter (γ for model HL; c for model PC; k for model IF) is zero, so γ,
c, or k is our effect size for these models. When coupled to the EVEN metacommunity, our
models are never strictly equivalent to the SNM so the effect size cannot be defined. In general,
the power of the test will also depend on other model parameters, so we need to perform power
calculations for a wide range of potentially interesting parameter values. To calculate the power
of tests of neutrality for a non-neutral model with a particular set of model parameters YT, we
use the following procedure:

1. Generate a large number (in this study, at least 100 and usually more than 400) of equilibri-
um data sets from the non-neutral model with parameters YT, by simulating the model for a
sufficient number of time steps. The number of time steps was chosen to be at least ten
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times the number of timesteps such that the species richness and Shannon diversity index in
the local community appeared to have reached their equilibrium values; this number de-
pends on the model parameters (e.g. fewer time steps are needed whenm is close to 1);

2. For each data set, perform a test of the neutral null model using the parametric bootstrap
method described above.

3. The power of the test is the fraction of non-neutral data sets for which the test was signifi-
cant (i.e. the neutral null model was rejected).

Because each non-neutral and neutral data set is statistically independent, the power is a bi-
nomial proportional random variable. Where shown, confidence intervals are 95% Jeffreys in-
tervals [65].

Power calculations for particular experiments
Our focus in this paper is on the detectability of non-neutral processes neutral in empirical sit-
uations. The power of the test is a property of the ensemble of data sets that could be produced
if the data were generated by a non-neutral alternative model. This ensemble of data sets de-
pends on the model parameters which are chosen, but for a particular data set we do not neces-
sarily know the appropriate parameters to use in the alternative model. Here, we choose
parameter sets such that the model best describes a set of summary statistics of empirical data
sets, specifically: species richness and Shannon index. Once the strength of the non-neutral
process (α, c, or k as appropriate) and the local community size J are chosen, the model is char-
acterised by two further parameters: the immigration ratem and the diversity (θ for model
LOGS or ST for model EVEN) of the metacommunity. There will therefore be a discrete set of
parameter values where the mean species richness and mean Shannon index of samples from
the model match the empirical data sets; in most cases we found only one such parameter set,
though in some cases there were two and in others there were none because the model pro-
duced a Shannon index that was always higher than, or always lower than, the empirical data.

We performed this procedure, for a set of candidate values of the non-neutral parameter, to
generate parameter sets resembling three tropical forest data sets belonging to the CTFS net-
work to which neutral theory has successfully been fitted in the past [46]: Barro Colorado Is-
land, Pasoh Forest Reserve, and Lambir Hills National Park [37–39]. For each forest, and
separately for each survey year, we tested the null model that the data were generated by the
SNM using the parametric bootstrap method described above. In each case we found p> 0.05,
showing that the data were statistically consistent with SNM. The mean total community size,
species richness, and Shannon index for these sites, averaged over the census years available at
http://www.ctfs.si.edu, are given in Table 5. These sites were selected because they had higher
Shannon index than a logseries distribution with the same size and richness, so we expected
that a model with non-neutral interspecific interactions or an EVEN metacommunity would
describe the data better than the SNM.

Table 5. Summary statistics for the three tropical forest data sets to which our non-neutral models
were fitted.

Data set J S Shannon index

Barro Colorado Island (1982–2005) 21058 232 4.275

Pasoh Forest Reserve (1987–2000) 27955 672 5.657

Lambir Hills National Park (1992–1997) 32918 1007 5.928

doi:10.1371/journal.pcbi.1004134.t005
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Volkov et al. [46] have compared the SNM to three other CTFS forest sites, but the Shannon
index in these sites is lower than (Korup National Park and Yasuni National Park) or almost
equal to (Sinharaja World Heritage Site) that of a logseries, so we expected it to be more diffi-
cult to find suitable model parameters. We also found that the Yasuni National Park data were
not consistent with SNM (p = 0.001 for 1996 and p = 0.014 for 2003), though we found p>
0.05 for all Korup and Sinharaja surveys.
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