1,295 research outputs found

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using simulated annealing

    Get PDF
    This is the post-print version of the article - Copyright @ 2008 Springer-VerlagThis paper proposes a simulated annealing (SA) algorithm based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. In the proposed SA multicast algorithm, the path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we anticipate the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the annealing process are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed SA based multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    A Method for Clustering and Cooperation in Wireless Multimedia Sensor Networks

    Get PDF
    Wireless multimedia sensor nodes sense areas that are uncorrelated to the areas covered by radio neighbouring sensors. Thus, node clustering for coordinating multimedia sensing and processing cannot be based on classical sensor clustering algorithms. This paper presents a clustering mechanism for Wireless Multimedia Sensor Networks (WMSNs) based on overlapped Field of View (FoV) areas. Overlapping FoVs in dense networks cause the wasting of power due to redundant area sensing. The main aim of the proposed clustering method is energy conservation and network lifetime prolongation. This objective is achieved through coordination of nodes belonging to the same cluster to perform assigned tasks in a cooperative manner avoiding redundant sensing or processing. A paradigm in this concept, a cooperative scheduling scheme for object detection, is presented based on the proposed clustering method

    Fully probabilistic deep models for forward and inverse problems in parametric PDEs

    Get PDF
    We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to-parameter (inverse) maps of parametric partial differential equations (PDEs). Our formulation leverages conventional PDE discretization techniques, deep neural networks, probabilistic modelling, and variational inference to assemble a fully probabilistic coherent framework. In the posited probabilistic model, both the forward and inverse maps are approximated as Gaussian distributions with a mean and covariance parameterized by deep neural networks. The PDE residual is assumed to be an observed random vector of value zero, hence we model it as a random vector with a zero mean and a user-prescribed covariance. The model is trained by maximizing the probability, that is the evidence or marginal likelihood, of observing a residual of zero by maximizing the evidence lower bound (ELBO). Consequently, the proposed methodology does not require any independent PDE solves and is physics-informed at training time, allowing the real-time solution of PDE forward and inverse problems after training. The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models. We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems such as linear and nonlinear Poisson problems, elastic shells with complex 3D geometries, and time-dependent nonlinear and inhomogeneous PDEs using a physics-informed neural network (PINN) discretization. We achieve up to three orders of magnitude speed-up after training compared to traditional finite element method (FEM), while outputting coherent uncertainty estimates

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200

    A Study of a Wireless Smart Sensor Platform for Practical Training

    Get PDF
    [[abstract]]In order to overcome the obstacles in traditional experimenting and practical training courses, as well as in enhancing the functions of the present e-learning system, the study took sensor network technology as the foundation in developing a web services system. The system will be able to make presentations of the students ‘operations and results on an immediate basis, allowing the students to be guided adequately as they face problems during experiment and practical training.[[booktype]]紙

    Fault-Tolerant Aggregation: Flow-Updating Meets Mass-Distribution

    Get PDF
    Flow-Updating (FU) is a fault-tolerant technique that has proved to be efficient in practice for the distributed computation of aggregate functions in communication networks where individual processors do not have access to global information. Previous distributed aggregation protocols, based on repeated sharing of input values (or mass) among processors, sometimes called Mass-Distribution (MD) protocols, are not resilient to communication failures (or message loss) because such failures yield a loss of mass. In this paper, we present a protocol which we call Mass-Distribution with Flow-Updating (MDFU). We obtain MDFU by applying FU techniques to classic MD. We analyze the convergence time of MDFU showing that stochastic message loss produces low overhead. This is the first convergence proof of an FU-based algorithm. We evaluate MDFU experimentally, comparing it with previous MD and FU protocols, and verifying the behavior predicted by the analysis. Finally, given that MDFU incurs a fixed deviation proportional to the message-loss rate, we adjust the accuracy of MDFU heuristically in a new protocol called MDFU with Linear Prediction (MDFU-LP). The evaluation shows that both MDFU and MDFU-LP behave very well in practice, even under high rates of message loss and even changing the input values dynamically.Comment: 18 pages, 5 figures, To appear in OPODIS 201

    Topology Analysis of Wireless Sensor Networks for Sandstorm Monitoring

    Get PDF
    Sandstorms are serious natural disasters, which are commonly seen in the Middle East, Northern Africa, and Northern China.In these regions, sandstorms have caused massive damages to the natural environment, national economy, and human health. To avoid such damages, it is necessary to effectively monitor the origin and development of sandstorms. To this end, wireless sensor networks (WSNs) can be deployed in the regions where sandstorms generally originate so that sensor nodes can collaboratively perform sandstorm monitoring and rapidly convey the observations to remote administration center. Despite the potential advantages, the deployment of WSNs in the vicinity of sandstorms faces many unique challenges, such as the temporally buried sensors and increased path loss during sandstorms. Consequently, the WSNs may experience frequent disconnections during the sandstorms. This further leads to dynamically changing topology. In this paper, a topology analysis of the WSNs for sandstorm monitoring is performed. Four types of channels a sensor can utilize during sandstorms are analyzed, which include air-to-air channel, air-to-sand channel, sand-to-air channel, and sand-to-sand channel. Based on the channel model solutions, a percolation-based connectivity analysis is performed. It is shown that if the sensors are buried in low depth, allowing sensor to use multiple types of channels improves network connectivity. Accordingly, much smaller sensor density is required compared to the case, where only terrestrial air channels are used. Through this topology analysis a WSN architecture can be deployed for very efficient sandstorm monitoring

    Topology Analysis of Wireless Sensor Networks for Sandstorm Monitoring

    Get PDF
    Sandstorms are serious natural disasters, which are commonly seen in the Middle East, Northern Africa, and Northern China.In these regions, sandstorms have caused massive damages to the natural environment, national economy, and human health. To avoid such damages, it is necessary to effectively monitor the origin and development of sandstorms. To this end, wireless sensor networks (WSNs) can be deployed in the regions where sandstorms generally originate so that sensor nodes can collaboratively perform sandstorm monitoring and rapidly convey the observations to remote administration center. Despite the potential advantages, the deployment of WSNs in the vicinity of sandstorms faces many unique challenges, such as the temporally buried sensors and increased path loss during sandstorms. Consequently, the WSNs may experience frequent disconnections during the sandstorms. This further leads to dynamically changing topology. In this paper, a topology analysis of the WSNs for sandstorm monitoring is performed. Four types of channels a sensor can utilize during sandstorms are analyzed, which include air-to-air channel, air-to-sand channel, sand-to-air channel, and sand-to-sand channel. Based on the channel model solutions, a percolation-based connectivity analysis is performed. It is shown that if the sensors are buried in low depth, allowing sensor to use multiple types of channels improves network connectivity. Accordingly, much smaller sensor density is required compared to the case, where only terrestrial air channels are used. Through this topology analysis a WSN architecture can be deployed for very efficient sandstorm monitoring

    Decentralized Estimation over Orthogonal Multiple-access Fading Channels in Wireless Sensor Networks - Optimal and Suboptimal Estimators

    Get PDF
    Optimal and suboptimal decentralized estimators in wireless sensor networks (WSNs) over orthogonal multiple-access fading channels are studied in this paper. Considering multiple-bit quantization before digital transmission, we develop maximum likelihood estimators (MLEs) with both known and unknown channel state information (CSI). When training symbols are available, we derive a MLE that is a special case of the MLE with unknown CSI. It implicitly uses the training symbols to estimate the channel coefficients and exploits the estimated CSI in an optimal way. To reduce the computational complexity, we propose suboptimal estimators. These estimators exploit both signal and data level redundant information to improve the estimation performance. The proposed MLEs reduce to traditional fusion based or diversity based estimators when communications or observations are perfect. By introducing a general message function, the proposed estimators can be applied when various analog or digital transmission schemes are used. The simulations show that the estimators using digital communications with multiple-bit quantization outperform the estimator using analog-and-forwarding transmission in fading channels. When considering the total bandwidth and energy constraints, the MLE using multiple-bit quantization is superior to that using binary quantization at medium and high observation signal-to-noise ratio levels
    • …
    corecore