22 research outputs found

    Depletion of eIF2.GTP.Met-tRNAi translation initiation complex up-regulates BRCA1 expression in vitro and in vivo

    No full text
    Most sporadic breast and ovarian cancers express low levels of the breast cancer susceptibility gene, BRCA1. The BRCA1 gene produces two transcripts, mRNAa and mRNAb. mRNAb, present in breast cancer but not in normal mammary epithelial cells, contains three upstream open reading frames (uORFs) in its 5′UTR and is translationally repressed. Comparable tandem uORFs are characteristically seen in mRNAs whose translational efficiency paradoxically increases when the overall translation rate is decreased due to phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α). Here we show fish oil derived eicosopanthenoic acid (EPA) that induces eIF2α phosphorylation translationally up-regulates the expression of BRCA1 in human breast cancer cells. We demonstrate further that a diet rich in EPA strongly induces expression of BRCA1 in human breast cancer xenografts

    The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells

    No full text
    Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells’ proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks

    Structureeactivity relationship study of 4EGI-1, small molecule eIF4E/eIF4G proteineprotein interaction inhibitors

    No full text
    International audienceProteineprotein interactions are critical for regulating the activity of translation initiation factors and multitude of other cellular process, and form the largest block of untapped albeit most challenging targets for drug development. 4EGI-1, (E/Z)-2-(2-(4-(3,4-dichlorophenyl)thiazol-2-yl)hydrazono)-3-(2- nitrophenyl)propanoic acid, is a hit compound discovered in a screening campaign of small molecule libraries as an inhibitor of translation initiation factors eIF4E and eIF4G proteineprotein interaction; it inhibits translation initiation in vitro and in vivo. A series of 4EGI-1-derived thiazol-2-yl hydrazones have been designed and synthesized in order to delineate the structural latitude and improve its binding affinity to eIF4E, and increase its potency in inhibiting the eIF4E/eIF4G interaction. Probing a wide range of substituents on both phenyl rings comprising the 3-phenylpropionic acid and 4-phenylthiazolidine moieties in the context of both E- and Z-isomers of 4EGI-1 led to analogs with enhanced binding affinity and translation initiation inhibitory activities

    Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target

    Get PDF
    Translation initiation plays a critical role in cellular homeostasis, proliferation, differentiation and malignant transformation. Consistently, increasing the abundance of the eIF2–GTP–tRNAi Met translation initiation complex transforms normal cells and contributes to cancer initiation and the severity of some anemias. The chemical modifiers of the eIF2–GTP–tRNAi Met ternary complex are therefore invaluable tools for studying its role in the pathobiology of human disorders and for determining whether this complex can be pharmacologically targeted for therapeutic purposes. Using a cell-based assay, we identified N,N9-diarylureas as unique inhibitors of ternary complex accumulation. Direct functional-genetic and biochemical evidence demonstrated that the N,N9-diarylureas activate heme-regulated inhibitor kinase, thereby phosphorylating eIF2a and reducing the abundance of the ternary complex. Using tumor cell proliferation in vitro and tumor growth in vivo as paradigms, we demonstrate that N,N9-diarylureas are potent and specific tools for studying the role of eIF2–GTP–tRNAi Met ternary complex in the pathobiology of human disorders.</p
    corecore