104 research outputs found

    Editorial: Autoinflammatory Diseases: From Genes to Bedside

    Get PDF
    The year 2019 marked the 20th anniversary of the formal recognition of autoinflammatory diseases as a distinct group of rheumatological conditions, following the identification of the gene mutated in patients with a dominantly inherited periodic fever known as familial Hibernian fever (FHF) (1). This nosological concept was introduced by one of the founders of the field, Dr. Daniel Kastner. Prior to this time, the only recognized periodic fever disease was familial Mediterranean fever (FMF) and patients presenting with similar symptoms, irrespective of inheritance pattern, were suspected to have a variant FMF. Most patients, with exception for FMF, were treated with NSAID, glucocorticoids alone, or in a combination with immunosuppressive agents. These chronic life-long conditions negatively impacted patients' quality of life and were associated with significant morbidity and mortality, partially due to treatment-related side effects. The early advances in the field of autoinflammation were driven by the ascertainment of families with inflammatory phenotypes segregating either as a recessive (FMF) or dominantly (FHF) inherited trait. This allowed for linkage mapping, positional cloning and candidate gene screening even before the completion of human genome sequencing project in 2003. These gene-hunting projects were laborious and time-consuming, but nonetheless successful and led to identification of the first three genes associated with autoinflammatory diseases: MEFV, TNFRSF1A, and CIAS1/NLRP3

    Autoinflammatory Disease Reloaded: A Clinical Perspective

    Get PDF
    Our understanding of the etiology of autoinflammatory disease is growing rapidly. Recent advances offer new opportunities for therapeutic intervention and suggest that the definition of what constitutes an autoinflammatory disease should be reassessed

    Biochemistry of Autoinflammatory Diseases: Catalyzing Monogenic Disease

    Get PDF
    Monogenic autoinflammatory disorders are a group of conditions defined by systemic or localized inflammation without identifiable causes, such as infection. In contrast to classical primary immunodeficiencies that manifest with impaired immune responses, these disorders are due to defects in genes that regulate innate immunity leading to constitutive activation of pro-inflammatory signaling. Through studying patients with rare autoinflammatory conditions, novel mechanisms of inflammation have been identified that bare on our understanding not only of basic signaling in inflammatory cells, but also of the pathogenesis of more common inflammatory diseases and have guided treatment modalities. Autoinflammation has further been implicated as an important component of cardiovascular, neurodegenerative, and metabolic syndromes. In this review, we will focus on a subset of inherited enzymatic deficiencies that lead to constitutive inflammation, and how these rare diseases have provided insights into diverse areas of cell biology not restricted to immune cells. In this way, Mendelian disorders of the innate immune system, and in particular loss of catalytic activity of enzymes in distinct pathways, have expanded our understanding of the interplay between many seemingly disparate cellular processes. We also explore the overlap between autoinflammation, autoimmunity, and immunodeficiency, which has been increasingly recognized in patients with dysregulated immune responses

    New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond

    Get PDF
    Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (\u3c5 \u3eyears), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it\u27s prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes

    Current State of Precision Medicine in Primary Systemic Vasculitides

    Get PDF
    Precision medicine (PM) is an emerging data-driven health care approach that integrates phenotypic, genomic, epigenetic, and environmental factors unique to an individual. The goal of PM is to facilitate diagnosis, predict effective therapy, and avoid adverse reactions specific for each patient. The forefront of PM is in oncology; nonetheless, it is developing in other fields of medicine, including rheumatology. Recent studies on elucidating the genetic architecture of polygenic and monogenic rheumatological diseases have made PM possible by enabling physicians to customize medical treatment through the incorporation of clinical features and genetic data. For complex inflammatory disorders, the prevailing paradigm is that disease susceptibility is due to additive effects of common reduced-penetrance gene variants and environmental factors. Efforts have been made to calculate cumulative genetic risk score (GRS) and to relate specific susceptibility alleles for use of target therapies. The discovery of rare patients with single-gene high-penetrance mutations informed our understanding of pathways driving systemic inflammation. Here, we review the advances in practicing PM in patients with primary systemic vasculitides (PSVs). We summarize recent genetic studies and discuss current knowledge on the contribution of epigenetic factors and extracellular vesicles (EVs) in disease progression and treatment response. Implementation of PM in PSVs is a developing field that will require analysis of a large cohort of patients to validate data from genomics, transcriptomics, metabolomics, proteomics, and epigenomics studies for accurate disease profiling. This multi-omics approach to study disease pathogeneses should ultimately provide a powerful tool for stratification of patients to receive tailored optimal therapies and for monitoring their disease activity

    The use of leukocytes’ secretome to individually target biological therapy in autoimmune arthritis : a case report

    Get PDF
    Background: Biological agents have allowed remarkable improvement in controlling autoimmune arthropathies, although none of the numerous biologics readily available represent a universal treatment standard. Moreover, classi‑ cal and genetic predictors are currently unsatisfactory to predict individual response to a biologic, and the best treat‑ ment selection is still based on a trial-and-error approach. Here, we report a clinical case demonstrating the usefulness of examining the leukocytes’ secretome of patients. We set up and standardized a protocol that examines a patient’s immune responses to establish the secretome of the blood mononuclear leukocytes and personalize the biotherapy. Case presentation: A 24-year-old woman was diagnosed with active early rheumatoid arthritis. The initial treat‑ ment regimen (prednisone, methotrexate, hydroxychloroquine, naproxen) was inefcient, as well as the anti-TNF adalimumab. The diagnosis was revised as possible rheumatoid arthritis-like psoriatic arthritis and adalimumab was replaced by abatacept (IgG1 Fc-CTLA-4) to no avail. Five years later, abatacept was replaced by the anti-IL-12/ IL-23 ustekinumab with no objective control over the symptoms. The patient was thus enrolled in a prospective study based on the quantifcation of cytokines secreted by peripheral blood leukocytes stimulated with well-known immune activators of pattern recognition receptors and cytokine signalling. The results of this study revealed that plasma concentrations of cytokines were similar between the patient and healthy donors. In comparison to leuko‑ cytes from healthy donors, the patient’s secretome showed a unique overproduction of IL-6. The anti-IL-6 receptor tocilizumab was, therefore, administered with a rapid improvement of her active psoriatic arthritis that remained dependent on low prednisone dosage. Clinical parameters progressively returned to normal levels and her quality of life was greatly improved, despite the major delay to begin the present personalized treatment. Conclusions: An efcient way to efectively treat patients with complex autoimmune arthropathies, and avoid irreversible disability, is to know their leukocytes’ secretome to identify abnormally secreted cytokines and personalize their biotherapy, as exemplifed by this case report

    Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review

    Get PDF
    PAPA syndrome (Pyogenic Arthritis, Pyoderma gangrenosum, and Acne) is an autosomal dominant, hereditary auto-inflammatory disease arising from mutations in the PSTPIP1/CD2BP1 gene on chromosome 15q. These mutations produce a hyper-phosphorylated PSTPIP1 protein and alter its participation in activation of the “inflammasome” involved in interleukin-1 (IL-1β) production. Overproduction of IL-1β is a clear molecular feature of PAPA syndrome. Ongoing research is implicating other biochemical pathways that may be relevant to the distinct pyogenic inflammation of the skin and joints characteristic of this disease. This review summarizes the recent and rapidly accumulating knowledge on these molecular aspects of PAPA syndrome and related disorders

    Internal standard-based analysis of microarray data2—Analysis of functional associations between HVE-genes

    Get PDF
    In this work we apply the Internal Standard-based analytical approach that we described in an earlier communication and here we demonstrate experimental results on functional associations among the hypervariably-expressed genes (HVE-genes). Our working assumption was that those genetic components, which initiate the disease, involve HVE-genes for which the level of expression is undistinguishable among healthy individuals and individuals with pathology. We show that analysis of the functional associations of the HVE-genes is indeed suitable to revealing disease-specific differences. We show also that another possible exploit of HVE-genes for characterization of pathological alterations is by using multivariate classification methods. This in turn offers important clues on naturally occurring dynamic processes in the organism and is further used for dynamic discrimination of groups of compared samples. We conclude that our approach can uncover principally new collective differences that cannot be discerned by individual gene analysi

    Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate.

    Get PDF
    Funder: Intramural Research Programs of the National Human Genome Research InstituteRegulatory B cells restrict immune and inflammatory responses across a number of contexts. This capacity is mediated primarily through the production of IL-10. Here we demonstrate that the induction of a regulatory program in human B cells is dependent on a metabolic priming event driven by cholesterol metabolism. Synthesis of the metabolic intermediate geranylgeranyl pyrophosphate (GGPP) is required to specifically drive IL-10 production, and to attenuate Th1 responses. Furthermore, GGPP-dependent protein modifications control signaling through PI3Kδ-AKT-GSK3, which in turn promote BLIMP1-dependent IL-10 production. Inherited gene mutations in cholesterol metabolism result in a severe autoinflammatory syndrome termed mevalonate kinase deficiency (MKD). Consistent with our findings, B cells from MKD patients induce poor IL-10 responses and are functionally impaired. Moreover, metabolic supplementation with GGPP is able to reverse this defect. Collectively, our data define cholesterol metabolism as an integral metabolic pathway for the optimal functioning of human IL-10 producing regulatory B cells
    • …
    corecore