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ABSTRACT

In this work we apply the Internal Standard-based
analytical approach that we described in an earlier
communication and here we demonstrate experi-
mental results on functional associations among
the hypervariably-expressed genes (HVE-genes).
Our working assumption was that those genetic
components, which initiate the disease, involve
HVE-genes for which the level of expression is un-
distinguishable among healthy individuals and indi-
viduals with pathology. We show that analysis of the
functional associations of the HVE-genes is indeed
suitable to revealing disease-specific differences.
We show also that another possible exploit of
HVE-genes for characterization of pathological
alterations is by using multivariate classification
methods. This in turn offers important clues on nat-
urally occurring dynamic processes in the organism
and is further used for dynamic discrimination of
groups of compared samples. We conclude that
our approach can uncover principally new collective
differences that cannot be discerned by individual
gene analysis.

INTRODUCTION

The microarray technology has revolutionized the study of
biology by allowing for simultaneous examination of
thousands of genes—the total genome expression profile.

However, the most exciting prospect is to characterize the
organism as a whole by defining the functional associ-
ations among their genes. It turns out that it is not
possible to visualize genetic associations in a steady
state. To understand the dynamic features of interest,
the underlying system must be stimulated to elucidate
the features of the biological regulatory networks.
A common practice in experimental biology has been to
make single, stepwise changes in one variable at a time
and to follow the system’s response as it proceeds from
an initial steady state to a final steady state.
Although such changes lead to results that are interpret-

able from a biochemical point of view, step changes do not
persistently excite the network since most of the data will
be biased because of approaching the new steady state. As
a result, many dynamic features remain unidentified, even
with extensive prior knowledge. Capturing the multivari-
ate nature of biological regulatory networks requires the
introduction of multivariate random perturbations, espe-
cially when the underlying data contain high levels of
noise. As it was shown earlier (1), random, independent
inputs enable better identification of relevant results, and
such identification is more robust to noise.
In most biological systems, random stimulations from

the environment continue throughout the life span of the
organism, and the organism persistently reacts in turn to
such random stimulations. Genes participating in this
reaction are in dynamic states. Thus, it is possible to
reveal genes displaying an extraordinarily high variability
of expression, and we call these genes ‘hypervariably
expressed genes’ or HVE-genes. It has been shown that
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even in genetically identical individuals; tissues display a
considerable degree of variation in gene expression (2).
There are multiple reasons for the extreme variability of
such genes. For example, previously unrecognized
heterogeneities could be present in the presumably homo-
genous group of samples, or there may be genes that are
involved throughout different phases of internal dynamic
processes.
Genetic diseases are often associated with the manifest-

ation of profound genetic variations. Hence, under such
conditions increased variability of some genes will be
expected, although the association of these genetic vari-
ations with transcriptional changes cannot be directly
inferred. Genes that demonstrate variability in expression
at the population level could be potential candidates for
further studies of the genetic architecture of complex traits
associated with pathology, especially if these gens display
intra-individual stability. In this context, it is interesting to
note that gene expression variability is often increased in
autoimmune pathologies and is normalized again after
successful treatment [see e.g. (3–5)].
Examples of significant increases of the proportion of

HVE-genes in various inflammatory pathologies include
lupus, rheumatoid arthritis and TNF Receptor
Associated Periodic Syndrome (TRAPS). Because
TRAPS is a rare autoinflammatory disorder caused by
mutations in the extracellular domain of the TNF
receptor superfamily 1A, one does expect to observe dif-
ferences in gene expression variability when comparing
TRAPS patients with healthy donors. Indeed when
comparing 14 TRAPS patients with a counterpart of 14
healthy donors, 124 genes displayed increased expression
variability in the samples from TRAPS patients
(Figure 2A). Many of these genes are members of the
TNF receptor pathway and are associated with inflamma-
tory processes (as shown by the Ingenuity Pathway
Analysis presented in Supplementary Figure S1). It is of
interest that among the outlined entities, Mediterranean
fever gene (MEFV) is present—a hallmark of another
close to TRAPS pathology—Mediterranean fever (6).
The most prominent problem in studying HVE-genes is

the lack of statistical methods to facilitate the selection of
HVE-genes from microarray experiments in which sample
sizes are too small to use standard statistical techniques.
Variable gene expression can be a characteristic feature of
pathology, but the lack of adequate methods for multi-
variate analysis complicates the interpretation of the
obtained results, especially regarding the reproducibility
and reliability of the established features (7,8). The
reasons behind these objections include the instability of
existing methods and sample sizes that are too small to
support the notion of reliable variability features.
We demonstrated earlier (9), that many problems of

genome-scale microarray experiments, which appeared to
be consequences of the vast amount of information, were
successfully resolved by the use of the Internal Standard
strategy. In this method information about nonspecific
variations is dissociated from the conventional behavior
of genes that share certain features, such as equity in ex-
pression, stability and distinctiveness from background
noise. Knowledge of the parameters governed by

Internal Standards is an added benefit to statistically
robust analyses of functional associations by clustering
and networking genes.

In this communication, we present the application of
the Internal Standard strategy to HVE-gene selection
and a functional analysis based on strong statistical
criteria. Rather than presenting an orderly, methodologic-
al approach, we assembled data obtained throughout
several research endeavors, and we present the actual
results from applying multivariate procedures to the
analysis of HVE-genes in both normal and pathological
processes.

Programs created for the selection and analyses of the
features of the HVE-genes are implemented in MatLab
(Mathworks, MA, USA) and available from authors
upon request.

MATERIALS AND METHODS

Gene expression data sets

This work uses a wide spectrum of experimental data. The
actual biological portion of the experiments was per-
formed in a collaborative manner separately for each
sub-project, and portions of them have already been
reported in independent publications or are in preparation
for publications. The common denominator of each of
these projects is the evaluation procedure. Expression
data sets were obtained using various sources of mRNA
and several microarray technologies. Fragmented descrip-
tions of the experimental protocols and the microarray
experiments are given in Table 1 and in the
Supplementary Data. The reason for compiling multiple
diverse biological experiments into a single paper is to
allow the output microarray data from these experiments
to be analyzed using the Internal Standard-based analysis
procedure.

Microarray data analysis

The methods used for gene expression analysis are based
on the use of Internal Standards, which are constructed by
identifying a large family of similarly behaving genes. The
application of these Internal Standards to the normaliza-
tion of microarray data and the differential analysis of
gene expression was presented in the first part of this
project (9).

The normalization procedure consists of two subse-
quent steps:

. The first step is the determination of the parameters of
the background of the array—the average (Av) and
standard deviation (SD) of normally distributed low
level expressions in an array with subsequent normal-
ization of all expressions in the array. A normalized
score, ‘S,’ is obtained [S= (PV–Av)/SD], where PV is
the original pixel value for the spot, and Av and SD
are the mean and standard deviation respectively, of
the set of background spots. The distribution of S has
zero mean and SD=1 over the set of background
genes in the normalized array. Only genes expressed
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above background (>3 SDs) are used for the second
step ‘adjustment’.

. The second step is the adjustment of the normalized
profiles to each other by robust regression analysis of
genes expressed above background. This procedure is
based on the selection of equally expressed genes as a
homogenous family of genes, with normally
distributed residuals defined as deviations from the re-
gression line. Outliers are thereafter determined as
genes having deviations not associated with this
internal standard of equity in expression, which
include thousands of members.

. For multi-sample data adjustment an averaged profile
is calculated and each sample is adjusted to the
averaged profile using the robust regression procedure
described above. A new averaged profile is calculated
from transformed profiles of the samples and the
adjustment procedure is repeated. Several subsequent
adjustment may be necessary for the best result,
however for the data initially normalized to back-
ground two steps of adjustment are usually sufficient.

One of the most important criteria in the selection of
HVE-genes and the analysis of their behavior is the choice
of the ‘Reference Group’—which is an Internal Standard
for equity in expression and for stability of the analyzed
processes (absence of variability exceeding technological
and biological noise).

Procedure for establishing the ‘Reference Group’

The Reference Group is constructed by identifying a set of
genes expressed above background level with inherently
low variability as determined by an F-test. The procedure
consists of two steps; the first step ensures that an absolute
majority of stable genes are identified, while the second
step ensures that the outliers are excluded with a simple
iterative procedure. At the beginning, all genes are repre-
sented by their residuals (relatively averaged profile),
which after normalization and log transformation lose
their sample-dependent individuality as well as their ex-
pression level-dependent individuality (Figure 1A). For
the majority of genes, the variation between replicates is
relatively small and homogenous and follows the standard
F-distribution. A small portion of genes that exhibit high
variation (statistically distinct from the rest) are the
HVE-genes. To obtain the Internal Standard for gene
variability, HVE-genes should be excluded by an iterative
procedure (9). The F-test is used as the criterion for the
exclusion of outliers, i.e. genes that exhibit an estimated
variability that is considerably higher than that that of the
total group. The total group variability is recalculated
after each exclusion step, and the procedure is repeated
until no additional genes can be excluded by this proced-
ure. The statistical threshold for the exclusion of
HVE-genes is chosen such that these exclusions are
based on an exceptional P-value (usually P< 0.05). The
completion of all the exclusion process a new Internal
Standard called the ‘Reference Group’, which is
composed of genes expressed above the background of
control samples with a low variability of expression (as
determined by an F-test) and whose residuals approximate

a normal distribution. Though not all excluded genes are
HVE-genes, we can be sure that the majority of them are
excluded and will not interfere with the estimation of par-
ameters for the rest of the analysis. The Reference Group
is further used for selection of HVE-genes and for analysis
of their functional associations in clustering and network-
ing procedures.

List of four résumés of calculations steps

Upon providing in the ‘Result’ section detailed explan-
ations and arguments about the chosen path of calcula-
tions, procedures summarizing the calculation steps are
presented in four sequential step-by-step résumés.

Step-by-step Résumé 1: Associative analysis of differ-
ences in gene expression variations.

Step-by-step Résumé 2: F-means cluster analysis of
HVE-genes co-expression.

Step-by-step Résumé 3: Correlation mosaic analysis of
HVE-genes co-expression.

Step-by-step Résumé 4: Networking procedure based on
the use of partial correlations.

RESULTS

All of the experiments described in this communication
were analyzed using the Internal Standard approach,
which has been described in our earlier paper (9), in com-
bination with other methods.

Selection of ‘hypervariably expressed genes’

Upon establishing the Internal Standard of biological sta-
bility (Figure 1A) the selection of HVE-genes was made
using strict statistical criteria. HVE genes were identified
as those for which the expression level varied significantly
(P<Po) when comparing the variability of individual
genes to the variability of the ‘Reference Group’. The
threshold Po was chosen either in a restricted manner
(Po< 1/N, where N is the number of all genes expressed
significantly differently from background noise) or in a
moderate manner (Po< 0.05), depending on the purpose
of the subsequent analysis. Choosing the threshold as
Po< 1/N (N was often more than half of all genes on
the array) can be considered to be a slight modification
of the Bonferroni correction for multiple hypothesis tests.
Such a choice excludes virtually all false positives, but
consequently loses many true positives as well. This
choice should be made when selecting HVE-genes that
are unique to any given group. In situations in which
the traditional P=0.05 is applied, many false positives
will be retained. Nevertheless, this choice can be useful
when studying HVE-genes that reproducibly appear in
several groups, cluster together or reproducibly intercon-
nect in a subsequent networking procedure. All of these
subsequent steps refine the list of HVE genes to only
those that demonstrate some reproducible features that
are probabilistically less likely to be present in false
selections.

Hyper-variations appearing from experimental errors
(the influence of dirty spots) were statistically filtered

7884 Nucleic Acids Research, 2011, Vol. 39, No. 18



from this analysis by comparing the variability of the re-
siduals in a replicated group of samples with the same
variability obtained by excluding both the maximum and
minimum one at a time. A statistically significant decrease

in variability after excluding one replicate provides
evidence of a possible error in that particular replicate.
Such genes are excluded from the family of HVE-genes
as being falsely selected.
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Figure 1. F-means clustering procedure. (A) The standard deviations of genes from the Reference Group, with HVE-genes (red bars) included.
(B) Gene content of the cluster with seeding profile shown as a red line. (C) Deviations of genes’ profiles from the seeding profile (shown as red SD
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Increased gene expression variability associated with
pathologies

In replicated microarray experiments, each gene in the
array can be characterized by two independent param-
eters: the level of expression and the variability (except
in regions of low-intensity spots that are abundantly
contaminated with highly variable background noise). In
addition to the conventional comparison of gene expres-
sion levels, it is possible to compare their variability using
strict statistical criteria. The conventional statistical
method for comparison of variability, ANOVA, encoun-
ters the same obstacles when applied to the analysis of
microarray experiments containing immense amount of
information. The conventional low statistical threshold
(P< 0.05) will produce a large output of false positive se-
lections, whereas any profound adjustments of this thresh-
old will result in the loss of sensitivity of the statistical test.
The practice of using the Internal Standard resolves this
problem with the same efficiency as was achieved for dif-
ferential gene expression analysis (9).
Selecting genes with different variabilities relies on the

next statistical steps. First, the F-test was used to identify
HVE-genes in each group of samples. Next, the differences
in their variability were determined in a paired
comparison.

Résumé 1: Differential analysis of gene expression
variability. Two groups are considered: Group 1 has
n chips and k genes, while Group 2 has m chips and k
genes.
Data is first normalized as described in the ‘Materials

and Methods’ section and presented in log-transformed
form, making the variability of the majority of genes in-
dependent of the level of their expression.

. Reference groups are created for each group of
samples (Groups1 and 2) and HVE-genes are selected
in each group as previously described. (Associative
F-tests, with m+k– 2 degrees of freedom (a ¼ 1

k), to
establish if the gene associates/belongs to the group
of stably expressed genes).

. A paired F-test is performed on the genes selected as
HVE-genes in both groups (Groups 1 and 2, compari-
son of the SDs for the same gene in two groups—with
n+m–2 degrees of freedom and threshold corrected
for the multiple hypothesis tests), to determine whether
the genes have equal SDs.

. Additional restrictions on the fold change and the
minimal average level of expression may applied. The
data are grouped into five sets:

B0: HVE-genes without differences in variability in
the case-control comparison

B1: HVE-genes having significantly higher variation
in the Experimental group

B2: HVE-genes having significantly higher variation
in the Control group

B3: Genes that exhibit the HVE property only in the
Experimental group

B4: Genes that exhibit the HVE property only in the
Control group

The ratio of SDs for HVE-genes in groups B1 and B2
was used to exclude changes that are statistically signifi-
cant but are not biologically significant. The fold change
restriction was usually applied as an addition to the stat-
istical analysis to draw attention to the most prominent
differences. Upon excluding Bo, all other groups (B1 –B4)
contain genes that exhibit some characteristic differences
in the variability of expression level when comparing ‘ex-
perimental versus control’. These genes also establish a
pathology-specific fingerprint. Unique variable genes
from the B3 group are of special importance in addressing
questions about dynamic processes associated with any
given pathology.

To understand the mechanisms behind a disease, one
should first attempt to establish whether disease-specific
differences in gene variability are the consequence or the
cause of the pathology. The superfluous variability of
normally stable genes as well as the ‘freezing’ of genes
predicted to participate in dynamically adaptive reactions
could provide clues towards the understanding of the
pathology.

Increased variability can also be of a non-genetic,
physiological nature; and one might expect that many
pathologies, such as inflammation, that are associated
with a burst of dynamic changes are also accompanied
with a considerable increase in the portion of genes that
display high variability.

Examples of significant increases in the proportion of
HVE-genes in various inflammatory pathologies include
lupus, rheumatoid arthritis and TRAPS. Because
TRAPS is a rare autoinflammatory disorder caused by
mutations in the extracellular domain of TNF receptor
superfamily 1A, differences in gene expression variability
are expected when comparing TRAPS patients with
healthy donors. Indeed, when comparing 14 TRAPS
patients with a counterpart of 14 healthy donors, 124
genes were found to display increased expression variabil-
ity in the samples from TRAPS patients (Figure 2A).
Many of these genes are members of the TNF receptor
pathway and are associated with inflammatory processes
(as shown by the Ingenuity Pathway Analysis presented in
Supplementary Figure S1). It is of interest that
Mediterranean fever gene (MEFV) is present among the
outlined entities. This gene is associated with
Mediterranean fever, a disease with similar pathology to
TRAPS (6).

Increased variability may be associated with the devel-
opment of pathology. Figure 2B presents the appearance
of uniquely variable genes in the course of the transform-
ation of endometrial cells into cancer cells by the action
of the carcinogen DMBA (7,12-dimethylbenz[a]anthra-
cene) (10).

Increased variability may also be observed in
pathologies that are less dynamic than inflammatory con-
ditions, for example, chronic pathologies that are not
associated with a burst of dynamic changes. Figure 2C
presents genes that demonstrate stable expression levels
in B cells from normal healthy donors and extreme vari-
ations in samples from patients with B cell chronic
lymphocytic leukemia (non-mutated and mutated sub-
groups) (11).
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The seemingly chaotic behavior of gene expression vari-
ation in various pathologies could in fact be a result of the
superposition of several co-expressed groups of genes. An
example of this phenomenon is presented in Figure 2D,
where a group of variable genes in Juvenile Rheumatoid
Arthritis (JRA) patients reveal closely related
co-expression patterns.

The set of genes that are uniquely expressed in any given
pathology is referred to as the ‘fingerprint’ or ‘signature’
of the particular pathology (12). We extend this definition
to refer to the set of uniquely variable genes and coin the
expression ‘functional fingerprint’.

An interesting example of a ‘functional fingerprint’ in
autoimmune pathologies was obtained using lupus prone
mice. We compared mice with the Sle1 mutation, which
makes them susceptible to the development of lupus-like
pathology, with mice possessing an additional Sles1
mutation that in turn cancels the effect of the first Sle1
mutation (13–15). We found that in B220+ cells, 35 genes
that were stable in healthy animals, became variable in

B6Sle1 mice and again reverted into stable form in
B6Sle1Sles1 mice (Supplementary Figure S2). In CD4+

cells, changes in variabilities of 150 genes was associated
with the Sle1 mutation.

F-means clustering for inferring functional
interconnections

There are diseases in which differences in HVE-genes
occur at particular stages of disease manifestation, while
no distinctive differences are evident at the onset. The only
means of revealing pathology-specific differences is
through the analysis of functional associations for such
HVE-genes. The most commonly used computational
approach to analyzing such functional associations is
cluster analysis.
F-means cluster analysis of HVE-genes is an unsuper-

vised method, in which every decision, including the selec-
tion of variable genes, the search for the optimal number
of clusters, as well as optimization of the distribution of

Figure 2. Increase in gene variability associated with different pathologies. Expression data normalized to make the overall Average=0, SD=1.
Abscissa: the sample numbers. Ordinate: the normalized expression level. mRNA for the transcription study was obtained from various samples:
(A) Samples from healthy controls (1–14) and TRAPS patients (15–28). (B) Endometrial cells: controls (1–9 and 10–18) and cells transformed to
cancer cells by DMBA (19–27 and 28–36). The results of two independent experiments are presented. (C) Samples from the B cells of healthy donors
(1–18), and B cell chronic lymphocytic leukemia patients: (19–34) un-mutated, and (35–54) mutated subgroups. (D) Whole blood samples from
healthy donors (1–20) and JRA patients (21–40).
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genes over clusters, is solved using statistical criteria. If we
know the precise differences in the gene expression levels
among the samples, we would have a ‘true’ clustering. The
residuals from the Reference Group provide an empirical
estimate of the error of the distribution, or the ‘noise’ in
the data.
F-means clustering of HVE-genes was initiated by

defining a parameter called the connectivity, which is
defined as the number of genes that vary in expression
in a similar manner as the ‘seed’ gene. Clusters then
were nucleated starting with genes of highest connectivity.
Genes of lower connectivity were included in a given
cluster if their expression levels deviated from the
seeding profile without exceeding the variation of the re-
siduals in the Reference Group based upon an F-test
(Figure 1B and C). The number of different clusters was
determined by the experimental system’s ability to distin-
guish differences exceeding random fluctuations of the
normalized residuals in the Reference Group.

Résumé 2: F-means cluster analysis of the coexpression of
HVE-genes. The clustering procedure consists of the fol-
lowing steps:

. Gene expression normalization, log-transformation
and rescaling as noted above.

. Selection of HVE-genes. Exclusion some of them
whose extreme variability was produced by the devi-
ation from stable state in only one sample to minimize
the influence of technical errors.

Determination of the connectivity, for each of these
HVE-genes. Connectivity is defined as the number of
genes whose expression patterns does not vary from the
expression pattern of a given gene within the ranges
derived from the Reference Group (based on the F-test).
The appropriate correction of threshold for the F-test
should be used to diminish the proportion of false
positive selections (Po< 1/N, N- number of HVE-genes).
HVE-genes for each group are sorted by their connect-

ivity and the clustering process begins with the genes ex-
hibiting the highest connectivity. The first cluster contains
the gene with the highest connectivity and all genes whose
deviations from the expression of this gene in each sample
have variabilities that do not exceed the variability of the
Reference Group. The next gene of higher connectivity
not belonging to the first cluster acts as the starting
point for Cluster #2, and other genes are included in this
cluster using the same criteria as in the first cluster. This
process continues until all genes are analyzed. Genes that
appeared in more than one cluster are considered to be
likely functional links among these clusters. Genes that
have zero connectivity do not belong to any cluster.
Additional restrictions on the choice of the thresholds
for statistical tests and the minimal cluster content can
be elicited from simulation experiments where the gene
expression data are replaced with random data having
the same characteristic parameters (average and
standard deviation). The use of simulated data establishes
the minimal cluster content that appears by chance at the
chosen statistical thresholds.

Three potentially different results are distinguished:

. functional associations for genes from the B4 set are
characteristic of dynamic processes that prevail under
normal conditions and are absent in pathology;

. functional associations appear under pathological con-
ditions only for genes from the B3 set, are uniquely
variable in the pathological group and are stable in the
normal control group

. functional associations for genes from the B0, B1 and
B2 sets are significantly modulated in one of the
compared groups (normal control or pathology).

Hypervariably expressed genes demonstrate similar
patterns of variations

The co-expression of HVE-genes or similarities in their
expression profiles are of particular importance to under-
standing the biological significance of these findings. The
idea that co-expression of genes revealed by the clustering
procedure implies the participation of these genes in
general biological processes was first formulated by the
group of Eisen (16). An extension of this idea is that the
same should be true for HVE-genes, whose different level
of expression can be considered as snapshots of some dy-
namical process. In contrast to temporal dynamics, the
actual shape of the cluster in the case of HVE-genes is
of lesser significance as shown in Figure 3. Even if
HVE-gene expression in each sample is consistent with
some phase of a dynamic process, the absence of informa-
tion about the real sequence of events makes the shape of
the profile useless.

Several practical examples demonstrate the consistent
characteristics of the variation in the expression levels of
the group of clustered genes. The first example was
obtained from analysis of gene expression in T lympho-
cytes from a homogenous group of mice. Figure 4 dem-
onstrates that dozens of genes with significantly high
variations in their expression levels could be gathered in
clusters. The very high content of these clusters excludes
the possibility of chance variations.

Another example of co-expression of HVE-genes was
obtained through analysis of gene expressions in samples
from TRAPS patients (Figure 5). The majority of genes in
the biggest clusters in samples from two entirely unrelated
groups—healthy controls and TRAPS patients—had iden-
tical co-expression patterns. The largest clusters in the
control group and in the group of TRAPS patients
consist of 163 and 51 genes, respectively. We applied the
same technique to F-means clustering in groups produced
from controls and patients by substituting of real data
with random values having the same averages and SD
for each gene. The largest cluster obtained in this simula-
tion procedure was 10 times smaller than the largest
cluster in the actual control group, and no genes were
found to cluster in the simulated patient group. Similar
results were found when comparing the eight largest
clusters obtained from the analysis of real and simulated
data (Figure 6).

Another example was created earlier in the course of
gene expression analysis in samples of children with
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polyarticular JRA and normal healthy controls
(27 samples altogether) (17). In this work the sizes of the
HVE-gene clusters also significantly exceeded the sizes of
clusters identified in the simulation experiment.
Additional validation of the biological meaningfulness of
partitioning HVE-genes into clusters was obtained by
analyzing of the cluster contents. The two biggest
clusters consisted exclusively of genes encoding ribosomal
proteins, while others consisted of genes encoding general
regulatory proteins, such as insulin and NF-kB, and also
of protein involved in mitochondrial protein synthesis,
proteasome and mini-chromosome maintenance DNA
replication complex. Furthermore, many co-expressed
genes shared a common function; for example genes
encoding numerous glycolytic enzymes and genes
involved in the tricarboxylic acid cycle. (17)

We have reported many other examples of employing
F-means clustering for the analysis of clinical and experi-
mental data in a series of publications (17–20).

Correlation mosaic analysis to visualize changes in
cluster associations

Both the reproducibility and significant differences in the
clustering results are usually estimated visually, or quali-
tatively. Here, we present correlation mosaic based visu-
alization of global patterns in expression data with
individually presented interconnections between patterns
and genes. This approach can be used as an independent
clustering procedure or as an addition to the completed
F-means clustering results. In this example the clustering
procedure is based on the Pearson correlation and consists
essentially of the sequence of operations used in F-means
clustering described above. The primary difference is that
instead of using deviation variability as a measure of
distance, we use a correlation coefficient. The number of
clusters and the cluster contents are determined using a
threshold that can be established in simulation experi-
ments. The output of this procedure consists of three
data sets: first, cluster allocation for all genes in the
analysis, second, connectivity parameter for each gene,
and third, matrices of correlation coefficients. Matrices
of correlation coefficients can be represented in a graph-
ical form known as a correlation mosaic, which is conveni-
ent for the visual inspection of the differences in gene
associations between cases and controls.

Résumé 3: Correlation mosaic analysis of the co-expression
of HVE-genes. The procedure consists of the following
steps:

. Normalization of gene expression and identification of
HVE-genes is conducted as in Résumé 1. HVE-gene
expression data are presented in normalized units.

. A connectivity parameter is defined for each
HVE-gene as the number of other genes whose expres-
sion profiles correlate with any given gene above the
threshold ‘tr’. The appropriate choice of threshold is
obtained in simulation experiments.

. HVE-genes in each group are sorted by their connect-
ivity, and the clustering process begins with genes of
the highest connectivity. The gene with the highest
connectivity and all genes that deviate from this
gene’s expression in each sample with variabilities
not higher than the variability of the Reference
Group comprise Cluster #1. The next gene not belong-
ing to the first cluster and genes selected as not signifi-
cantly deviating comprise Cluster #2. The process
continues until all genes are analyzed. Genes that
have zero connectivity do not belong to any cluster.

. The result is presented as a color-plot with the gene
numbers used as the coordinates along the axes, with
the same ordering G1. . .Gn used along the abscissa and
the ordinate).

. When the correlated gene associations are compared
between two groups of samples, the order of
coordinated genes is the same in both mosaics.

This correlation mosaic method was applied to the
analysis of gene expression data and cytokine multiplex
data in clinical and experimental samples (17–26). In the

Figure 3. Shapes of the HVE gene expression profiles does not have
sense. Diagrams illustrating the formation of the cluster profiles of
HVE-genes in a homogeneous group. (A) Possible assortment of nine
samples representing two dynamical processes with participation of
several genes, each of whose profiles are shown in either red or
black. (B) Variant of A in which the order of the samples is arbitrarily
changed. The exact shape of the dynamical process is lost after such
rearrangement, but the fact of gene co-expression is still evident.
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very first example a mouse model of bladder inflammation
was used to investigate the role of neurokinin 1 receptors
(NK1R) and neprilysin (NEP) in neurogenic inflamma-
tion. Cystitis was induced in wild-type mice sensitized to
human serum albumin after being challenged with the
same antigen. Microarray analysis revealed that inflam-
matory processes in wild mice-type led to a
downregulation of neprilysin expression. The most prom-
inent cluster of activator protein 1 (AP-1)-responsive
genes included neprilysin (upper portion of Figure 7). In
contrast, NK1R

�/– mice failed to mount an inflammatory
reaction and the presence of neprilysin negatively
correlated with the expression of the same gene(s) in
wild-type mice (bottom Figure 7). The switching of NEP
correlations from positive in wild-type mice to negative in
NK1R�/– mice is very convincing in this presentation.
This work (21) provided a suitable model for elucidating
the involvement of AP-1 transcription factor in bladder

inflammation and suggested a testable hypothesis regard-
ing the role of NK1R and NEP in inflammation.

. The correlation mosaic analysis also was applied to
HVE-genes in JRA data as given above. Figure 8
presents an outstanding visualization of the changes
in some gene associations with other cluster members
during the course of treatment of JRA patients.
Analysis of the healthy donor group (HD group)
reveals the presence of two highly correlated clusters
of genes. The color variation in the mosaic visualizes
the differences among the healthy donors (HD),
non-treated (AD) and treated partially-responding
(PR) patients. On closer inspection, the involvement
of genes with altered functional interconnections
within each cluster indicates that those genes are
directly involved in the pathology (17).

. These examples demonstrate that with the use of
color-coded correlation mosaics, complicated

Figure 4. F-means clustering of gene expressions in T cells from B6 mice. The six largest clusters are shown. Abscissa: cluster numbers derived from
10 samples from 10 different mice. Ordinate: the normalized expression levels. Figures in brackets: the numbers of genes in each cluster.
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Figure 5. Reproducibility of the HVE gene co-expression in two unrelated sample groups: NC (normal controls) and TP (TRAPS patients).
Normalized expression levels (ordinate) are presented against the numbers of samples in each group. Genes in the largest cluster (#1, A) in the
NC group are also co-expressed in the TP group (B). Most of the genes belong to the largest cluster (#2, D) in the TP group. Conversely, genes in the
largest cluster (#2, D) of the TP group are co-expressed in the NC group (C) and again almost entirely belong to the largest cluster of the NC group.
The second largest cluster of the NC group #1 (E) is the inversion of the #1 cluster (a) in the NC. Genes are almost entirely in the second largest
cluster (#1, F–H) of the TP group. The opposite is seen in (G and H). In contrast with the NC, Clusters #1 and #2 in the TP are not the reverse
reflections of each other.

Nucleic Acids Research, 2011, Vol. 39, No. 18 7891



interdependencies between genes can be visualized and
differences between subgroups can be assessed.
Correlation clustering is not just a procedure for gene
partitioning into different compartments but is rather a
combination of clustering and networking. This
method provides a tool for quantitatively estimating
interconnections between genes within clusters.

Gene networking based on partial correlation coefficients

Gene regulatory networks have become a major focus of
interest in recent years. A number of reverse engineering
approaches have been developed to help uncover these
regulatory networks. Correlative mosaics demonstrate
the existence of closely correlated modules, which are con-
nected through positive or negative correlations. This type
of presentation seems to be in good agreement with the
widely discussed modularity of gene networks. In spite of

this agreement some caution is necessary as the relatively
high connectivities of gene clusters in correlation mosaic
analysis mostly represent the indirect influences of a small
number of regulatory elements. Information about direct
interactions gives partial correlations that in turn enable
to the distinguish of correlations between two variables
that originate through direct influence versus correlation
originated through the influence of intermediate variables.
Partial correlation excludes many possibilities and usually
significantly diminishes gene connectivity. We used this
procedure for the networking of HVE-genes (18,20,21).

Résumé 4: Networking procedure based on partial
correlations. The environmental circle for each gene is
determined as a set of genes correlated with any given
one having a correlation coefficient above threshold t1.

The matrix of partial correlation coefficients within the
environmental circle of genes is calculated. The elements
of the matrix Rij represent the partial correlation coeffi-
cients between the given gene and gene i with the removed
influence of gene j. All genes are within the given gene’s
environmental circle.

The genes Gi are considered to be causally intercon-
nected with the given gene if the row Rij of the matrix
does not have members below threshold t1, and if the
averaged value of the row is above threshold t2. A
Monte–Carlo simulation study is used to define the stat-
istical thresholds (t1 and t2) below which partial correl-
ation coefficients are likely due to chance.

One example of the networking of HVE-genes was
obtained during comparative analysis of the response to
stimulation of EBV-transformed B cells derived from SLE
patients and normal unrelated controls. Pathway Analysis
allowed us to establish model networks of functional gene
expression important for B cell signaling and elucidate
gene expression regulatory interconnections disrupted in
B cells from individuals with lupus (Dozmorov I,
Dominguez N, Sestak AL, Xu HM, Harley JB, James
JA, Guthridge JM manuscript in preparation).
Fragments of this network that include genes uniquely
activated in only one of these groups (controls or
patients) are shown in Figure 9. These unique network
fragments reproduced in two independent experiments
present functional fingerprints of activated B cells from
lupus patients and normal controls. In this context, one
should note that practically all genes uniquely activated in
normal controls (Figure 9A) are known as being
‘pro-apoptotic’, while the genes uniquely activated in B
cells from lupus patients (Figure 9B) are ‘anti-apoptotic’.
These results are in good agreement with the established
defects of B cell apoptosis in lupus patients (27).

TNF pathway modulation

In another example this networking procedure was used to
establish functional interconnections between HVE-genes
in TRAPS pathology and normal control samples.
HVE-genes demonstrating reproducible co-expression
both in control and in TRAPS patients were selected
(Supplementary Figure 3S). It is important to note that
the majority of genes belonging to the largest cluster in
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the control samples are also tightly clustered in the largest
cluster of the patient samples. The close similarity of the
contents of the largest clusters in two independently
produced clustering procedures supports our hypothesis
about common biological basis for such co-expression.

F-means clustering of some genes associated with the
TNF pathway are shown in Figure 10. Partial correlation
coefficients were calculated for each pair of 42 selected
genes. Two thresholds were used to select significant inter-
connections. The threshold (t1) 0.7 was used to select the
unique connections, and 0.5 was used for connections
reproduced in the networks of both groups. The results
of these calculations are presented in Figure 10A and B.
The connections obtained with this method appeared to be
consistent with current knowledge about this TNF
pathway (Supplementary Figure S4 shows the pathway
obtained with the use of Ingenuity Pathway Analysis).
Interleukin-6 (IL-6) interconnections were expected
based on the altered function of this cytokine in TRAPS
pathology (28). The appearance of the MEFV gene in the
TRAPS network is also interesting because mutations
in this gene characterize another periodic fever,
Mediterranean fever.

DISCUSSION

Microarray technology has revolutionized the study
of biology by allowing the simultaneous examination of
the expression profile of the entire genome. Gene expres-
sion profiling enables rapid analysis of thousands of
genes in parallel and has been used to establish
many disease-specific fingerprints of pathology (29–31).

Such profiling might facilitate the development of diag-
nostic strategies for complex diseases, although one has
to bear in mind that among hundreds of differentially ex-
pressed genes, only a portion might play a critical role in
pathology, while many others may have only bystander
effects. The analysis of the disease processes requires
methods that extend beyond comparing gene expression
levels. The most exciting opportunity is to characterize
pathology through changes in ‘functional associations’
among genes. Genes involved in such processes reveal
extreme variability in their expression levels, thereby un-
covering functional associations among them. As stated in
the work from the Kauffman laboratory (1), random in-
dependent inputs (as chaotic environmental perturbations
are) allow for better recognition of regulatory associ-
ations, and such identifications are more robustly resistant
to noise. These properties make HVE-genes an important
source of information about regulatory interconnections
in biological systems.
The most renowned problem in HVE-gene research is

the absence of adequate statistical methods for the selec-
tion and interpretation of HVE-genes (8). Among the
most frequently employed statistical evaluations for
HVE-genes are ANOVA methods, which are used to de-
termine the fraction of genes significantly differentially
expressed between individuals (32,33). These methods
are simple and are based on commonly understood statis-
tical principles. However, the problems of sensitivity and
specificity prevent blindfolded application of these
straightforward statistical methods to microarray
analysis without previously determined corrections to
the significance thresholds.

Figure 7. Mosaic of correlation coefficients of the HVE-genes in wild-type and NK1R–/– mice. The coordinates along axis are the numbers of genes
listed in the left box. The white lines in A indicate the borders of three clusters of tightly interconnected genes. The colored lines and spots beyond
the clusters represent positively linked genes (red) belonging to two or more clusters (Gene 5, for example), or negatively linked genes (blue). Genes
that exhibited positive correlations over time were represented in graded shades of red, and genes negatively correlated are shown in graded shades of
blue. Genes with an absence of correlation are indicated in green. Neprilysin is in the central position in the most prominent cluster found in
wild-type mice, which includes a group of AP-1 responsive genes. In contrast, the association with these genes becomes negative in NK1R–/– mice,
who fail to mount antigen induced bladder inflammation.
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Figure 8. Correlation mosaics for genes from the two largest clusters in the control group (adopted from [Jarvis ea, 2003]). The designations are the
same as in Figure 7. There is shown transformation of the mosaic created for patients group (Acute disease) to the Partial Response mosaic (patients
who have been treated with corticosteroids or other anti-inflammatory drugs), and finally to the Healthy Donors mosaic.
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To address this issue, we have successfully implemented
the Internal Standard strategy for differential gene expres-
sion analysis (9) and developed optimal power analysis,
including the estimation of replication requirements.

Although we have presented several experimental conclu-
sions within each project presented in this communication,
some of them appear to be of general validity, and in turn
they become solid attributes of gene expression analysis.

Figure 9. Networking of reproducibly variable genes after stimulation of EBV-transformed B cells from normal controls (A) and lupus patients (B).
This network is a fragment of a gene network consisting of genes uniquely activated in normal (A) or lupus patient (B) groups. The gene network
was built through the partial correlations method (as described in the ‘Materials and Methods’ section).
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We found that HVE-genes are true components of the
process of gene expression regulation. Together, HVE-
genes serve as an important source of information about
the functional connectivity of the genome and about dy-
namical processes based on this connectivity.
The high incidence of expression variability, as well as

the coherent appearance of this kind of expression,

excludes the likelihood that this behavior occurs by
chance (Figures 4–6). A striking feature of our findings
is not only that a significant portion of genes are expressed
hypervariably, but that the resulting patterns of variability
are remarkably similar. These observations enable the ap-
plication of standard clustering procedures to the analysis
with the result that the contents of such clusters exceed

Figure 10. TNF pathway. Gene interconnection in both normal control (A) and TRAPS patients (B) obtained by calculating partial correlation
coefficients. The solid lines represent positive interconnections with averaged partial correlation coefficients >0.7. The dashed lines represent inter-
connections with negative partial correlation coefficients with averaged values <–0.7. The red lines represent interconnections significantly unique in
each of the populations.
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any chance coincidences. Additional evidence supporting
the premises of our model includes the extraordinary high
reproducibility of independently derived experimental
sample groups (Figure 5 and Supplementary Figure S3).

Our finding that many genes with high expression
variabilities are associated exclusively with pathologies
while the same set of genes display stable expression in
normal samples (Figure 2) suggests the possibility that
the mentioned pathologies are associated with a loss of
control in transcriptional processes. However, this
problem is awaiting careful investigation. Another
surprising aspect of our findings is a functional relatedness
among many of the studied HVE-genes. As an example,
we point out that most genes demonstrating unique vari-
ability in the periodic fever syndrome (TRAPS) are directly
associated with inflammatory processes (Figure 2A and
Supplementary Figure S1).

In addition, almost all of the genes that are uniquely
variable in samples from lupus patients have
anti-apoptotic activity, whereas genes uniquely variable
in control samples all have distinct pro-apoptotic
activity (Figure 9). This result is in strong agreement
with the known fact that B cells of lupus patients have
defects in apoptosis (27).

Application of the networking procedure to the
HVE-genes selected from samples from TRAPS patients
and normal controls produced remarkably reproducible
associations among genes of the TNF pathway. The few
differences between the ‘pathological’ and ‘normal’
networks are consistent with the established features of
this pathology (6,34).

We are committed to the viewpoint that the biological
reality of hyper-variations in gene expression forms a solid
basis for the analysis of biological objects. For example:

. Statistically significant differences in the variabilities of
HVE-genes as compared with the majority of relatively
stable genes in an array (Figure 1A) exclude the pos-
sibility that such fluctuations are due to chance.

. Many HVE-genes have very similar expression
profiles, thereby enabling the identification of large
clusters of co-expressed genes (Figures 4 and 5). The
sizes of such clusters significantly exceed the sizes of
clusters in simulated random sets of data (Figure 6).

. Some groups of co-expressed genes are highly repro-
ducible, appearing to be only slightly altered in differ-
ent groups of samples (Figure 5 and Supplementary
Figure S3).

. The clusters of co-expressed HVE-genes present
groups of genes joined by their participation in
regular biological processes (Figures 7–9).

As we have shown in various applications, these
features of HVE-genes make them a very important
source of information regarding functional interconnec-
tions in biological systems and processes.

Various pathologies associated with the stimulation of
defense functions (e.g. inflammation and autoimmunity)
increased the proportions of the HVE-genes in compari-
son with the relatively quiet control state (Figure 2). It is
possible that an analogy with the temperature of physical

bodies could be drawn with regard to the increased
mobility of such pathologies.
Considering that HVE-genes are a presentation of

internal dynamic processes, it is possible to employ the
usual methods of analyses for these processes, including
clustering and networking approaches usually applied to
the study of temporal dynamics. Genes could be gathered
into groups of co-expressed genes by conventional cluster-
ing procedures. Such clusters contain HVE-genes
associated with common biological processes and signal-
ing pathways. Loss or change of membership in these
clusters by one or several genes could be a hallmark of
pathology-associated alterations, as demonstrated in
Figure 7.
We usually observe more than one large cluster of

HVE-genes with possible functional associations, which
substantiates the coexistence of different internal
dynamics. For example, we often observe the presence
of two large clusters with anti-correlated profiles
(Figure 5, see also Figure 2C). Such anti-correlation indi-
cates that these two dynamic processes exist not as inde-
pendent phenomena but as compensatory reactions to
mutual changes. Deviation from the stability of genes
within one group is accompanied by a corresponding
and opposite change by the genes in another cluster.
Alterations in such compensatory reactions could also
be important hallmarks of pathology.
The sum of two anti-correlated profiles is constant, and

this invariability is maintained in the coordinated vari-
ations of the profiles, i.e. the changes in one profile are
compensated by opposite changes in another. In this situ-
ation, it is possible that a more complicated form of com-
pensatory reactions, incorporating the involvement of
more than two clusters or HVE-genes with different
dynamic profiles, is occurring. Examples of such associ-
ations were obtained through linear discriminatory
analysis for the classification of sample groups. Dynamic
discriminant function analysis was developed based on the
concept that stable classification parameters (roots) can be
derived from highly variable gene-expression data (35).
We demonstrated earlier that the functional interconnec-
tions between HVE discriminatory genes can be presented
in the form of functional networks that exhibit distinct-
ive changes in pathology cases when compared to
controls (35).
In conclusion, the analysis of the coordinated behavior

of HVE-genes can resolve the very important clinical
problem of non-homogeneity in sample groups that
consist of patients with phenotypically similar syndromes.
Such discrimination and exclusion of homogeneity is es-
pecially important in characterizing the phases of path-
ology development and the changes in the course of
response to the treatment and in discriminating hidden
pathologies when a disease with common clinical charac-
teristics can include pathologies of different molecular
mechanisms.
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