4,257 research outputs found

    Linear-quadratic stochastic differential games for distributed parameter systems

    Get PDF
    A linear-quadratic differential game with infinite dimensional state space is considered. The system state is affected by disturbance and both players have access to different measurements. Optimal linear strategies for the pursuer and the evader, when they exist, are explicitly determined

    Parameter estimation of electricity spot models from futures prices

    Get PDF
    We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modified spot model. Using the martingale property of the modified price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. We estimate the parameters of the model by the method of maximum likelihood using the Kalman filter's estimate of the unobservable state variables, coupled with the usual statistical techniques. The main advantage of the new model is that it avoids the inclusion of artificial noise to the observation equation for the implementation of Kalman filter. The extra noise is build in within the model in an arbitrage free setting

    Towards dynamical network biomarkers in neuromodulation of episodic migraine

    Get PDF
    Computational methods have complemented experimental and clinical neursciences and led to improvements in our understanding of the nervous systems in health and disease. In parallel, neuromodulation in form of electric and magnetic stimulation is gaining increasing acceptance in chronic and intractable diseases. In this paper, we firstly explore the relevant state of the art in fusion of both developments towards translational computational neuroscience. Then, we propose a strategy to employ the new theoretical concept of dynamical network biomarkers (DNB) in episodic manifestations of chronic disorders. In particular, as a first example, we introduce the use of computational models in migraine and illustrate on the basis of this example the potential of DNB as early-warning signals for neuromodulation in episodic migraine.Comment: 13 pages, 5 figure

    SDSS J0349-0059 is a GW Virginis star

    Full text link
    High speed photometric observations of the spectroscopically-discovered PG 1159 star SDSS J034917.41-005917.9 in 2007 and 2009 reveal a suite of pulsation frequencies in the range of 1038 - 3323 microHz with amplitudes between 3.5 and 18.6 mmag. SDSS J034917.41-005917.9 is therefore a member of the GW Vir class of pulsating pre-white dwarfs. We have identified 10 independent pulsation frequencies that can be fitted by an asymptotic model with a constant period spacing of 23.61 +/- 0.21 s, presumably associated with a sequence of l = 1 modes. The highest amplitude peak in the suite of frequencies shows evidence for a triplet structure, with a frequency separation of 14.4 microHz. Five of the identified frequencies do not fit the l = 1 sequence, but are, however, well-modeled by an independent asymptotic sequence with a constant period spacing of 11.66 +/- 0.13 s. It is unclear to which l mode these frequencies belong.Comment: Accepted for publication in MNRAS; 5 pages, 6 figures and 4 table

    Synchronization of Coupled Nonidentical Genetic Oscillators

    Full text link
    The study on the collective dynamics of synchronization among genetic oscillators is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. Genetic oscillators are biochemical networks, which can generally be modelled as nonlinear dynamic systems. We show in this paper that many genetic oscillators can be transformed into Lur'e form by exploiting the special structure of biological systems. By using control theory approach, we provide a theoretical method for analyzing the synchronization of coupled nonidentical genetic oscillators. Sufficient conditions for the synchronization as well as the estimation of the bound of the synchronization error are also obtained. To demonstrate the effectiveness of our theoretical results, a population of genetic oscillators based on the Goodwin model are adopted as numerical examples.Comment: 16 pages, 3 figure

    Probing Trilinear Gauge Boson Interactions via Single Electroweak Gauge Boson Production at the LHC

    Get PDF
    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous trilinear vector-boson interactions W^+ W^- \gamma and W^+ W^- Z through the single production of electroweak gauge bosons via the weak boson fusion processes q q -> q q W (-> \ell^\pm \nu) and q q -> q q Z(-> \ell^+ \ell^-) with \ell = e or \mu. After a careful study of the standard model backgrounds, we show that the single production of electroweak bosons at the LHC can provide stringent tests on deviations of these vertices from the standard model prediction. In particular, we show that single gauge boson production exhibits a sensitivity to the couplings \Delta \kappa_{Z,\gamma} similar to that attainable from the analysis of electroweak boson pair production.Comment: 20 pages, 6 figure

    Chaotic Phase Synchronization in Bursting-neuron Models Driven by a Weak Periodic Force

    Full text link
    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1 : 1 phase locking between a single spike and one period of the force and 1 : l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale

    ANOMALOUS GAUGE BOSON INTERACTIONS

    Get PDF
    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge boson self-interactions. If the energy scale of the new physics is ∌1\sim 1 TeV, these low energy anomalous couplings are expected to be no larger than O(10−2){\cal O}(10^{-2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.Comment: 53 pages with 17 embedded figures, LaTeX, uses axodraw.sty, figures available on request. The complete paper, is available at ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z or http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-871.ps.Z Summary of the DPF Working Subgroup on Anomalous Gauge Boson Interactions of the DPF Long Range Planning Stud

    First Observation of the Hadronic Transition ΄(4S)→ηhb(1P)and New Measurement of the hb(1P) and ηb(1S) Parameters

    Get PDF
    Using a sample of 771.6×106 ΄΄(4S) decays collected by the Belle experiment at the KEKB e+e− collider, we observe, for the first time, the transition ΄(4S)→ηhb(1P) with the branching fraction B[΄(4S)→ηhb(1P)]=(2.18±0.11±0.18)×10−3 and we measure the hb(1P) mass Mhb(1P)=(9899.3±0.4±1.0)  MeV/c2, corresponding to the hyperfine (HF) splitting ΔMHF(1P)=(0.6±0.4±1.0)  MeV/c2. Using the transition hb(1P)→γηb(1S), we measure the ηb(1S) mass Mηb(1S)=(9400.7±1.7±1.6)  MeV/c2, corresponding to ΔMHF(1S)=(59.6±1.7±1.6)  MeV/c2, the ηb(1S) width Γηb(1S)=(8+6−5±5)  MeV/c2and the branching fraction B[hb(1P)→γηb(1S)]=(56±8±4)%
    • 

    corecore