6,109 research outputs found
Wildlife Management Education Needs to Go Urban
One of the common problems associated with introducing urban wildlife management (UWM) as part of the curriculum in the wildlife sciences has been the simplistic notions our colleagues, students, and others have regarding its conceptual framework. For example, the âraccoon in a garbage canâ always seems to become the summative explanation of urban wildlife management. Other reductionist definitions include animal damage control, or that UWM is a particular suite of techniques peculiar only to urban areas. The latter problem is of our own making given the inclusion of UWM in the Wildlife Management Techniques Manual published by The Wildlife Society. Truth be known, wildlife management techniques primarily consist of catching, identifying, marking, and counting wild animals flavored with a healthy dose of formulae and statistics to add scientific rigor to the first four activities. UWM is another expression of the depth and breadth of human involvement with wild things. This presentation will explore several similarities and differences that differentiate wildlife management in humanâaltered and natural rural landscapes. This analysis is required to provide a more complete and accurate presentation about UWM to colleagues, students, and the general public. As such, it will help to articulate and summarize the critical curriculum components for courses on UWM. Finally, this exercise will provide a unique identity to the UWM profession which goes far beyond raccoons and techniques
EFFECTIVENESS OF SQUIRREL FENCING FOR PROTECTING PECAN GROVES
During 1994, we tested the hypothesis that an energized, high-tensile wire fence prevents fox squirrels (Sciurus niger) from crossing into a pecan (Carya illinoensis) grove. When the fence was energized, we recorded fewer (P = 0.03) trips across the fence by squirrels (n - 19) and fewer (P \u3c 0.001) telemetry fix-points in the pecan grove. Effective squirrel fencing may offer wildlife managers an alternative method of damage prevention. Ecological ramifications to target and non-target species are discussed
The Management of Hunting Leases By Rural Landowners
Most of the land in Texas is privately owned and is an important as a source for hunting recreation. Profit maximization theory (PMT) and economic behavioral theory (EBT) were used to explain differences in the net incomes of Texas landowners who sold hunting leases during the 1989-90 hunting season. In 1990, 4,621 landowners who were licensed to sell hunting leases by the Texas Parks and Wildlife Department responded to a mail survey. Findings indicated that the statewide median net lease income was $1,100, few landowners considered their leasing operations as businesses, and few practiced intensive management of their operations. Number of acres leased had the most important effect on net lease income. Findings supported aspects of both PMT and EBT
SBSI:an extensible distributed software infrastructure for parameter estimation in systems biology
Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSIâs use of standard data formats
A Brownian particle in a microscopic periodic potential
We study a model for a massive test particle in a microscopic periodic
potential and interacting with a reservoir of light particles. In the regime
considered, the fluctuations in the test particle's momentum resulting from
collisions typically outweigh the shifts in momentum generated by the periodic
force, and so the force is effectively a perturbative contribution. The
mathematical starting point is an idealized reduced dynamics for the test
particle given by a linear Boltzmann equation. In the limit that the mass ratio
of a single reservoir particle to the test particle tends to zero, we show that
there is convergence to the Ornstein-Uhlenbeck process under the standard
normalizations for the test particle variables. Our analysis is primarily
directed towards bounding the perturbative effect of the periodic potential on
the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications
of the conten
Longitudinal patterns in an Arkansas River Valley stream: an Application of the River Continuum Concept
The River Continuum Concept (RCC) provides the framework for studying how lotic ecosystems vary from headwater streams to large rivers. The RCC was developed in streams in eastern deciduous forests of North America, but watershed characteristics and land uses differ across ecoregions, presenting unique opportunities to study how predictions of the RCC may differ across regions. Additionally, RCC predictions may vary due to the influence of fishes, but few studies have used fish taxa as a metric for evaluating predictions of the RCC. Our goal was to determine if RCC predictions for stream orders 1 through 5 were supported by primary producer, macroinvertebrate, and fish communities in Cadron Creek of the Arkansas River Valley. We sampled chlorophyll a, macroinvertebrates, and fishes at five stream reaches across a gradient of watershed size. Contrary to RCC predictions, chlorophyll a did not increase in concentration with catchment size. As the RCC predicts, fish and macroinvertebrate diversity increased with catchment size. Shredding and collecting macroinvertebrate taxa supported RCC predictions, respectively decreasing and increasing in composition as catchment area increased. Herbivorous and predaceous fish did not follow RCC predictions; however, surface-water column feeding fish were abundant at all sites as predicted. We hypothesize some predictions of the RCC were not supported in headwater reaches of this system due to regional differences in watershed characteristics and altered resource availability due to land use surrounding sampling sites
Stabilization of a-conotoxin AuIB: influences of disulfide connectivity and backbone cyclization
a-Conotoxins are peptides isolated from the venom ducts of cone snails that target nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential applications for treating a range of conditions in humans, including pain. However, like all peptides, conotoxins are susceptible to degradation, and to enhance their therapeutic potential it is important to elucidate the factors contributing to instability and to develop approaches for improving stability. AuIB is a unique member of the a-conotoxin family because the nonnative "ribbon" disulfide isomer exhibits enhanced activity at the nAChR in rat parasympathetic neurons compared with the native "globular" isomer. Here we show that the ribbon isomer of AuIB is also more resistant to disulfide scrambling, despite having a nonnative connectivity and flexible structure. This resistance to disulfide scrambling does not correlate with overall stability in serum because the ribbon isomer is degraded in human serum more rapidly than the globular isomer. Cyclization via the joining of the N- and C-termini with peptide linkers of four to seven amino acids prevented degradation of the ribbon isomer in serum and stabilized the globular isomers to disulfide scrambling. The linker length used for cyclization strongly affected the relative proportions of the disulfide isomers produced by oxidative folding. Overall, the results of this study provide important insights into factors influencing the stability and oxidative folding of a-conotoxin AuIB and might be valuable in the design of more stable antagonists of nAChRs
Predominant and Substoichiometric Isomers of the Plastid Genome Coexist within Juniperus Plants and Have Shifted Multiple Times during Cupressophyte Evolution
Most land plant plastomes contain two copies of a large inverted repeat (IR) that promote high-frequency homologous recombination to generate isomeric genomic forms. Among conifer plastomes, this canonical IR is highly reduced in Pinaceae and completely lost from cupressophytes. However, both lineages have acquired short, novel IRs, some of which also exhibit recombinational activity to generate genomic structural diversity. This diversity has been shown to exist between, and occasionally within, cupressophyte species, but it is not known whether multiple genomic forms coexist within individual plants. To examine the recombinational potential of the novel cupressophyte IRs within individuals and between species, we sequenced the plastomes of four closely related species of Juniperus. The four plastomes have identical gene content and genome organization except for a large 36 kb inversion between approximately 250 bp IR containing trnQ-UUG. Southern blotting showed that different isomeric versions of the plastome predominate among individual junipers, whereas polymerase chain reaction and high-throughput read-pair mapping revealed the substoichiometric presence of the alternative isomeric form within each individual plant. Furthermore, our comparative genomic studies demonstrate that the predominant and substoichiometric arrangements of this IR have changed several times in other cupressophytes as well. These results provide compelling evidence for substoichiometric shifting of plastomic forms during cupressophyte evolution and suggest that substoichiometric shifting activity in plastid genomes may be adaptive
Spitzer, Near-Infrared, and Submillimeter Imaging of the Relatively Sparse Young Cluster, Lynds 988e
We present {\it Spitzer} images of the relatively sparse, low luminosity
young cluster L988e, as well as complementary near-infrared (NIR) and
submillimeter images of the region. The cluster is asymmetric, with the western
region of the cluster embedded within the molecular cloud, and the slightly
less dense eastern region to the east of, and on the edge of, the molecular
cloud. With these data, as well as with extant H data of stars
primarily found in the eastern region of the cluster, and a molecular CO
gas emission map of the entire region, we investigate the distribution of
forming young stars with respect to the cloud material, concentrating
particularly on the differences and similarities between the exposed and
embedded regions of the cluster. We also compare star formation in this region
to that in denser, more luminous and more massive clusters already investigated
in our comprehensive multi-wavelength study of young clusters within 1 kpc of
the Sun.Comment: 21 pages, 6 tables, 13 figures. Full resolution figures at:
http://astro.pas.rochester.edu/~tom/Preprints/L988e.pd
- âŠ