7 research outputs found

    Security in vehicular embedded systems

    Get PDF
    Los automóviles modernos cuentan con una gran cantidad de servicios que suponen potenciales puntos de entrada a ataques exteriores, ya sea de manera física o remota. Cada vez se pueden observar más noticias al respecto y es un tema sobre el que hay un gran desconocimiento, tanto por parte de los usuarios como de los propios fabricantes, que en muchas ocasiones no toman las medidas pertinentes, o lo hacen mal y tarde. Sin embargo, se está tratando de aumentar la seguridad en aspectos muy diversos referentes a los vehículos, teniendo en cuenta las imitaciones en procesamiento, tamaño y coste de sus componentes. Este trabajo pretende llevar a cabo un análisis de las distintas situaciones que pueden poner en compromiso un vehículo y las soluciones que la industria y los investigadores han ofrecido, partiendo además desde los aspectos más básicos, como los buses internos CAN de los vehículos, su formato, manera de comunicación, capas y control de errores

    Analysis of IoT Vulnerabilities for Honeypot Deployment

    Get PDF
    Con la revolución tecnológica que ha supuesto la Internet de las Cosas (Internet of Things, IoT) se han presentado escenarios donde la preocupación por la seguridad en dicho entorno es cada vez más relevante. Están comenzando a surgir vulnerabilidades en varios dispositivos, y los sistemas trampa son una excelente manera de lidiar con este problema. En este trabajo se analizan soluciones para honeypots en el entorno IoT (y en otros que se puedan adaptar) para sentar las bases de una metodología que permita el despliegue de honeypots IoT.Ministerio de Economía y Competitividad, Gobierno de España, mediante el proyecto IoTest (TIN2015-72634-EXP)

    A Polyphasic Characterisation of Tetradesmus almeriensis sp. nov. (Chlorophyta: Scenedesmaceae)

    Get PDF
    The microalga Tetradesmus almeriensis, previously known as Scenedesmus almeriensis, has been isolated and cultivated as a highly productive, fast-growing strain known as a natural source of different products of commercial interest, including bioactive compounds such as lutein. This strain produces up to 40 g·m−2·day−1 of lutein under optimal conditions and is highly recommendable for outdoor production in temperate and warm climates, showing maximal performance at temperatures up to 35 °C with no photo-inhibition taking place with irradiances greater than 1000 μE·m−2·s−1. Morphological and molecular data allow its assignment to the Chlorophycean genus Tetradesmus. The new species can be distinguished from similar Tetradesmus taxa due to its unique combination of features that are seen under light microscopy. We present herein a robust and comprehensive phylogenetic analysis of T. almeriensis, together with several additional Scenedesmaceae species, using a combination of maximum likelihood and Bayesian approaches. Our results confirm T. almeriensis as a distinct species consistently clustering with other Scenedesmaceae

    Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region

    Get PDF
    ©2023. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published, version of a Published Work that appeared in final form in Marine Drugs. To access the final edited and published work see https://doi.org/ 10.3390/md21070416Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identifi cation of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquacul ture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential

    Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region

    Get PDF
    © 2023. The authors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the Accepted version of a Published Work that appeared in final form in Marine Drugs. To access the final edited and published work see https://doi.org/10.3390/md21070416Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece, Mar. Drugs 2023, 21, 416. https://doi.org/10.3390/md21070416 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2023, 21, 416 2 of 26 Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identification of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquaculture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential
    corecore