97 research outputs found

    The Mass of the Compact Object in the X-Ray Binary Her X-1/HZ Her

    Full text link
    We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H_gamma absorption line: mx=1.8Msun and mv=2.5Msun. These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are mx=0.85\pm0.15Msun and mv=1.87\pm0.13Msun. These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made.Comment: 20 pages, 4 tables, 8 figure

    How is Binary Radio-Pulsars with Black Holes Population Rich?

    Full text link
    Using "Scenario Machine" we have carried out population synthesis of radio pulsar with black hole binaries (BH+Psr) in context of the most wide assumptions about star mass loss during evolution, binary stars mass ratio distribution, kick velocity and envelope mass lost during collapse. Our purpose is to display that under any suppositional parameters of evolution scenario BH+Psr population have to be abundant in Galaxy. It is shown that in the all models including models evolved by Heger et al. (2002), Woosley et al. (2002), Heger et al. (2003) expected number of the black holes paired with radio pulsars is sufficient enough to discover such systems within the next few years.Comment: 8 pages, 4 figures, accepted to MNRA

    Switchable Polymerization of Norbornene Derivatives by a Ferrocene‐Palladium(II) Heteroscorpionate Complex

    Full text link
    The ferrocene-chelating heteroscorpionate complex [(fc(PPh2){BH{(3,5-Me)2pz}2})PdMe] {(fcP,B)PdMe, fc = 1,1′-ferrocenediyl, pz = pyrazole} catalyzes the addition polymerization of norbornene and norbornene derivatives upon oxidation with [AcFc][BArF] {acetyl ferrocenium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate}. In situ reduction of [(fcP,B)PdMe][BArF] in the presence of a substituted norbornene results in significant decrease of catalytic activity. Addition of one equivalent of oxidant restores the activity

    The mass of the compact object in the low-mass X-ray binary 2S 0921-630

    Get PDF
    We interpret the observed radial-velocity curve of the optical star in the low-mass X-ray binary 2S 0921-630 using a Roche model, taking into account the X-ray heating of the optical star and screening of X-rays coming from the relativistic object by the accretion disk. Consequences of possible anisotropy of the X-ray radiation are considered. We obtain relations between the masses of the optical and compact (X-ray) components, m v and m x , for orbital inclinations i = 60°, 75°, and 90°. Including X-ray heating enabled us to reduce the compact object's mass by ∼0.5-1 M ⊙, compared to the case with no heating. Based on the K0III spectral type of the optical component (with a probable mass of m v ≈ 2.9 M ⊙), we concluded that m x ≈ 2.45-2.55 M ⊙ (for i = 75°-90°). If the K0III star has lost a substantial part of its mass as a result of mass exchange, as in the V404 Cyg and GRS 1905+105 systems, and its mass is m v ≈ 0.65-0.75 M ⊙, the compact object's mass is close to the standard mass of a neutron star, m x ≈ 1.4 M ⊙ (for i = 75°-90°). Thus, it is probable that the X-ray source in the 2S 0921-630 binary is an accreting neutron star. © Pleiades Publishing, Inc., 2006

    The mass of the compact object in the X-ray binary her X-1/HZ her

    Get PDF
    We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H γ absorption line: m x = 1.8 M⊙ and mv = 2.5 M⊙. These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are m x = 0.85 ± 0.15 M⊙ and mv = 1.87 ± 0.13 M⊙. These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made. © 2008 Pleiades Publishing, Ltd

    Continuous monitoring of pulse period variations in Her X-1 using Swift/BAT

    Full text link
    Context: Monitoring of pulse period variations in accreting binary pulsars is an important tool to study the interaction between the magnetosphere of the neutron star and the accretion disk. While the X-ray flux of the brightest X-ray pulsars have been successfully monitored over many years (e.g. with RXTE/ASM, CGRO/BATSE, Swift/BAT), the possibility to monitor their pulse timing properties continuously has so far been very limited. Aims: In our work we show that the Swift/BAT observations can be used to monitor coherent pulsations of bright X-ray sources and use the Swift archival data to study one of the most enigmatic X-ray pulsars, Hercules X-1. A quasi-continuous monitoring of the pulse period and the pulse period derivative of an X-ray pulsar, here Her X-1, is achieved over a long time (<~ 4 yrs). We compare our observational results with predictions of accretion theory and use them to test different aspects of the physical model of the system. Methods: In our analysis we use the data accumulated with Swift/BAT starting from the beginning of 2005 (shortly after launch) until the present time. To search for pulsations and for their subsequent analysis we used the count rate measured by the BAT detector in the entire field of view. Results: The slope of the correlation between the locally determined spin-up rate and the X-ray luminosity is measured for Her X-1 and found to be in agreement with predictions of basic accretion torque theory. The observed behaviour of the pulse period together with the previously measured secular decrease of the system's orbital period is discussed in the frame of a model assuming ejection of matter close to the inner boundary of the accretion disk.Comment: 7 pages, 5 figures, accepted for publication in Astronomy & Astrophysic
    corecore