298 research outputs found

    The nature of opal burial in the equatorial atlantic during the deglaciation

    Get PDF
    Relatively high opal concentrations are measured in equatorial Atlantic sediments from the most recent deglaciation. To shed light on their causes, seven cores were analyzed for their content of siliceous (diatom, silicoflagellates, radiolarians, phytoliths, and sponge spicules) and calcareous (coccolithophores) microfossils. An early deglacial signal is detected at the time of rising boreal summer insolation ca. 18 ka by the coccolithophores. The surface freshening is likely due to the rain belt associated with the intertropical convergence zone (ITCZ), implying its southward shift relatively to its present-day average positioning. The diatom assemblages corresponding to the following increase in diatom abundances ca. 15.5 ka suggest the formation of a cold tongue of upwelled water associated with tropical instability waves propagating westward. Such conditions occur at present during boreal summer, when southerly trade winds are intensified, and the ITCZ shifts northward. The presence of the diatom Ethmodiscus rex (Wallich) Hendey and the coccolithophore Florisphera profunda indicates a deep thermocline and nutrient enrichment of the lower photic zone, revealing that Si-rich southern sourced water (SSW) likely contributed to enhanced primary productivity during this time interval. The discrepancies between the maximum opal concentrations and siliceous marine microfossils records evidence the contribution of freshwater diatoms and phytoliths, indicative of other processes. The definition of the nature of the opal record suggests successive productivity conditions associated with specific atmospheric settings determining the latitudinal ITCZ positioning and the development of oceanic processes; and major oceanic circulation changes permitting the contribution of SSW to marine productivity at this latitude.LA/P/0101/2020info:eu-repo/semantics/publishedVersio

    Limited variability in the phytoplankton Emiliania huxleyi since the pre-industrial era in the Subantarctic Southern Ocean

    Get PDF
    The Southern Ocean is warming faster than the average global ocean and is particularly vulnerable to ocean acidification due to its low temperatures and moderate alkalinity. Coccolithophores are the most productive calcifying phytoplankton and an important component of Southern Ocean ecosystems. Laboratory observations on the most abundant coccolithophore, Emiliania huxleyi, suggest that this species is susceptible to variations in seawater carbonate chemistry, with consequent impacts in the carbon cycle. Whether anthropogenic environmental change during the industrial era has modified coccolithophore populations in the Southern Ocean, however, remains uncertain. This study analysed the coccolithophore assemblage composition and morphometric parameters of E. huxleyi coccoliths of a suite of Holocene-aged sediment samples from south of Tasmania. The analysis suggests that dissolution diminished the mass and length of E. huxleyi coccoliths in the sediments, but the thickness of the coccoliths was decoupled from dissolution allowing direct comparison of samples with different degree of preservation. The latitudinal distribution pattern of coccolith thickness mirrors the latitudinal environmental gradient in the surface layer, highlighting the importance of the geographic distribution of E. huxleyi morphotypes on the control of coccolith morphometrics. Additionally, comparison of the E. huxleyi coccolith assemblages in the sediments with those of annual subantarctic sediment trap records found that modern E. huxleyi coccoliths are 2% thinner than those from the pre-industrial era. The subtle variation in coccolith thickness contrasts sharply with earlier work that documented a pronounced reduction in shell calcification and consequent shell-weight decrease of 30-35% on the planktonic foraminifera Globigerina bulloides induced by ocean acidification. Results of this study underscore the varying sensitivity of different marine calcifying plankton groups to ongoing environmental change.FCT: UIDB/04326/2020;info:eu-repo/semantics/publishedVersio

    A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    Get PDF
    We produced a composite depth scale and chronology for Site U1385 on the SW Iberian Margin. Using log(Ca/Ti) measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to 166.5 meters composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopes of benthic foraminifera were correlated to a stacked δ^18O reference signal (LR04) to produce an oxygen isotope stratigraphy and age model. Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37^oN. The benthic δ^18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene (‘41-kyr world’) when boundary conditions differed significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ^18O surpassed ~ 3.3-3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles.This research was supported by the Natural Environmental Research Council Grant NE/K005804/1 to DH and LS and NE/J017922/1 to DH.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.gloplacha.2015.07.00

    A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    Get PDF
    Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic δ18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene (‘41-kyr world’) when boundary conditions differed significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ18O surpassed ~ 3.3–3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles

    Grain size and diatom valves in sediment cores KS82-30 and KS82-31

    No full text
    Diatoms were studied quantitatively in six latest Quaternary (~70 kyr B.P. to Recent) piston cores from the westernmost Mediterranean, the Alboran Basin, and the Atlantic region immediately to the west of the Straits of Gibraltar. The Atlantic cores completely lack diatoms. In the Alboran Basin, diatoms are common from late Stage 3 (~27.5 kyr B.P.) to Termination lb (9 kyr B.P.) and in Recent core tops, but are absent in the other latest Quaternary intervals. Maximum accumulation of diatoms and highest abundance of species normally in sediments associated with increased productivity occurred during the latest Quaternary deglaciation, in the first phase of Termination I (~14.8 kyr B.P.). In the modern Alboran Basin, a region of high biological productivity occurs immediately east of the Gibraltar Straits. This high productivity results from upwelling associated with the interaction between the Atlantic inflow and the bottom topography near the Spanish coast. The upwelled nutrient-rich waters are then advected to the east and southeast by the surficial anticyclonic gyral circulation. Late Quaternary variations in diatom abundance are considered to reflect changes in this upwelling intensity with highest diatom abundances inferred to result from increased upwelling associated with an intensification of the anticyclonic gyral circulation. Highest inferred upwelling rates occurred during the first phase of latest Quaternary deglaciation. It is possible that an intensification of circulation within the Mediterranean Basin as a whole occurred from late Stage 3 to mid Termination I because widespread hiatus formation has been reported at this time in the Straits of Sicily due to an increase in the formation of intermediate waters. Diatoms were not preserved in other latest Quaternary intervals due to insufficient productivity to counterbalance their dissolution
    • …
    corecore