338 research outputs found

    Severe congenital microcephaly with AP4M1 mutation, a case report

    Get PDF
    Background: Autosomal recessive defects of either the B1, E1, M1 or S1 subunit of the Adaptor Protein complex-4 (AP4) are characterized by developmental delay, severe intellectual disability, spasticity, and occasionally mild to moderate microcephaly of essentially postnatal onset. Case presentation: We report on a patient with severe microcephaly of prenatal onset, and progressive spasticity, developmental delay, and severe intellectual deficiency. Exome sequencing showed a homozygous mutation in AP4M1, causing the replacement of an arginine by a stop codon at position 338 of the protein (p.Arg338X). The premature stop codon truncates the Mu homology domain of AP4M1, with predicted loss of function. Exome analysis also showed heterozygous variants in three genes, ATR, MCPH1 and BLM, which are known causes of autosomal recessive primary microcephaly. Conclusions: Our findings expand the AP4M1 phenotype to severe microcephaly of prenatal onset, and more generally suggest that the AP4 defect might share mechanisms of prenatal neuronal depletion with other genetic defects of brain development causing congenital, primary microcephaly

    Chemical chaperone treatment reduces intracellular accumulation of mutant collagen IV and ameliorates the cellular phenotype of a COL4A2 mutation that causes haemorrhagic stroke

    Get PDF
    Haemorrhagic stroke accounts for approximately 20% of stroke cases and porencephaly is a clinical consequence of perinatal cerebral haemorrhaging. Here we report the identification of a novel dominant G702D mutation in the collagen domain of COL4A2 (collagen IV alpha chain 2) in a family displaying porencephaly with reduced penetrance. COL4A2 is the obligatory protein partner of COL4A1 but in contrast to most COL4A1 mutations, the COL4A2 mutation does not lead to eye or kidney disease. Analysis of dermal biopsies from patient and his unaffected father, who also carries the mutation, revealed that both display basement membrane (BM) defects. Intriguingly, defective collagen IV incorporation into the dermal BM was only observed in the patient and was associated with endoplasmic reticulum (ER) retention of COL4A2 in primary dermal fibroblasts. This intracellular accumulation led to ER-stress, unfolded protein response activation, reduced cell proliferation and increased apoptosis. Interestingly, absence of ER retention of COL4A2 and ER-stress in cells from the unaffected father indicate that accumulation and/or clearance of mutant COL4A2 from the ER may be a critical modifier for disease development. Our analysis also revealed that mutant collagen IV is degraded via the proteasome. Importantly, treatment of patient cells with a chemical chaperone decreased intracellular COL4A2, ER-stress and apoptosis, demonstrating that reducing intracellular collagen accumulation can ameliorate the cellular phenotype of COL4A2 mutations. Importantly, these data highlight that manipulation of chaperone levels, intracellular collagen accumulation and ER-stress are potential therapeutic options for collagen IV diseases including haemorrhagic stroke

    A novel human iPSC model of COL4A1/A2 small vessel disease unveils a key pathogenic role of matrix metalloproteinases

    Get PDF
    Cerebral small vessel disease (SVD) affects the small vessels in the brain and is a leading cause of stroke and dementia. Emerging evidence supports a role of the extracellular matrix (ECM), at the interface between blood and brain, in the progression of SVD pathology, but this remains poorly characterized. To address ECM role in SVD, we developed a co-culture model of mural and endothelial cells using human induced pluripotent stem cells from patients with COL4A1/A2 SVD-related mutations. This model revealed that these mutations induce apoptosis, migration defects, ECM remodeling, and transcriptome changes in mural cells. Importantly, these mural cell defects exert a detrimental effect on endothelial cell tight junctions through paracrine actions. COL4A1/A2 models also express high levels of matrix metalloproteinases (MMPs), and inhibiting MMP activity partially rescues the ECM abnormalities and mural cell phenotypic changes. These data provide a basis for targeting MMP as a therapeutic opportunity in SVD.</p

    SwissGenVar: A platform for clinical grade interpretation of genetic variants to foster personalized health care in Switzerland

    Full text link
    Large-scale next-generation sequencing (NGS) germline testing is technically feasible today, but variant interpretation represents a major bottleneck in analysis workflows including the extensive variant prioritization, annotation, and time-consuming evidence curation. The scale of the interpretation problem is massive, and variants of uncertain significance (VUS) are a challenge to personalized medicine. This challenge is further compounded by the complexity and heterogeneity of standards used to describe genetic variants and associated phenotypes when searching for relevant information to inform clinical decision-making. For this purpose, all five Swiss academic Medical Genetics Institutions joined forces with the Swiss Institute of Bioinformatics (SIB) to create SwissGenVar as a user-friendly nationwide repository and sharing platform for genetic variant data generated during routine diagnostic procedures and research sequencing projects. Its objective is to provide a protected environment for expert evidence sharing about individual variants to harmonize and up-scale their significance interpretation at clinical grade following international standards. To corroborate the clinical assessment, the variant-related data are combined with consented high-quality clinical information. Broader visibility will be gained by interfacing with international databases, thus supporting global initiatives in personalized health care

    LTBP2 null mutations in an autosomal recessive ocular syndrome with megalocornea, spherophakia, and secondary glaucoma

    Get PDF
    The latent TGFβ-binding proteins (LTBPs) and fibrillins are a superfamily of large, multidomain proteins with structural and TGFβ-signalling roles in the extracellular matrix. Their importance is underscored by fibrillin-1 mutations responsible for Marfan syndrome, but their respective roles are still incompletely understood. We report here on two families where children from healthy, consanguineous parents, presented with megalocornea and impaired vision associated with small, round, dislocated lenses (microspherophakia and ectopia lentis) and myopia, as well as a high-arched palate, and, in older children, tall stature with an abnormally large arm span over body height ratio, that is, associated features of Marfan syndrome. Glaucoma was not present at birth, but was diagnosed in older children. Whole genome homozygosity mapping followed by candidate gene analysis identified homozygous truncating mutations of LTBP2 gene in patients from both families. Fibroblast mRNA analysis was consistent with nonsense-mediated mRNA decay, with no evidence of mutated exon skipping. We conclude that biallelic null LTBP2 mutations cause the ocular phenotype in both families and could lead to Marfan-like features in older children. We suggest that intraocular pressures should be followed-up in young children with an ocular phenotype consisting of megalocornea, spherophakia and/or lens dislocation, and recommend LTBP2 gene analysis in these patients

    Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN Nephritis Trial

    Get PDF
    Background: Long-term immunosuppressive treatment does not efficiently prevent relapses of lupus nephritis (LN). This investigator-initiated randomised trial tested whether mycophenolate mofetil (MMF) was superior to azathioprine (AZA) as maintenance treatment. Methods: A total of 105 patients with lupus with proliferative LN were included. All received three daily intravenous pulses of 750 mg methylprednisolone, followed by oral glucocorticoids and six fortnightly cyclophosphamide intravenous pulses of 500 mg. Based on randomisation performed at baseline, AZA (target dose: 2 mg/kg/day) or MMF (target dose: 2 g/day) was given at week 12. Analyses were by intent to treat. Time to renal flare was the primary end point. Mean (SD) follow-up of the intent-to-treat population was 48 (14) months. Results: The baseline clinical, biological and pathological characteristics of patients allocated to AZA or MMF did not differ. Renal flares were observed in 13 (25%) AZA-treated and 10 (19%) MMF-treated patients. Time to renal flare, to severe systemic flare, to benign flare and to renal remission did not statistically differ. Over a 3-year period, 24 h proteinuria, serum creatinine, serum albumin, serum C3, haemoglobin and global disease activity scores improved similarly in both groups. Doubling of serum creatinine occurred in four AZA-treated and three MMF-treated patients. Adverse events did not differ between the groups except for haematological cytopenias, which were statistically more frequent in the AZA group (p=0.03) but led only one patient to drop out. Conclusions: Fewer renal flares were observed in patients receiving MMF but the difference did not reach statistical significance.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Brain Health Services: organization, structure, and challenges for implementation. A user manual for Brain Health Services—part 1 of 6

    Get PDF
    Dementia has a devastating impact on the quality of life of patients and families and comes with a huge cost to society. Dementia prevention is considered a public health priority by the World Health Organization. Delaying the onset of dementia by treating associated risk factors will bring huge individual and societal benefit. Empirical evidence suggests that, in higher-income countries, dementia incidence is decreasing as a result of healthier lifestyles. This observation supports the notion that preventing dementia is possible and that a certain degree of prevention is already in action. Further reduction of dementia incidence through deliberate prevention plans is needed to counteract its growing prevalence due to increasing life expectancy. An increasing number of individuals with normal cognitive performance seek help in the current memory clinics asking an evaluation of their dementia risk, preventive interventions, or interventions to ameliorate their cognitive performance. Consistent evidence suggests that some of these individuals are indeed at increased risk of dementia. This new health demand asks for a shift of target population, from patients with cognitive impairment to worried but cognitively unimpaired individuals. However, current memory clinics do not have the programs and protocols in place to deal with this new population. We envision the development of new services, henceforth called Brain Health Services, devoted to respond to demands from cognitively unimpaired individuals concerned about their risk of dementia. The missions of Brain Health Services will be (i) dementia risk profiling, (ii) dementia risk communication, (iii) dementia risk reduction, and (iv) cognitive enhancement. In this paper, we present the organizational and structural challenges associated with the set-up of Brain Health Services
    corecore