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Abstract 

Background  Congenital hydrocephalus is characterized by ventriculomegaly, defined as a dilatation of cerebral ven‑
tricles, and thought to be due to impaired cerebrospinal fluid (CSF) homeostasis. Primary congenital hydrocephalus is 
a subset of cases with prenatal onset and absence of another primary cause, e.g., brain hemorrhage. Published series 
report a Mendelian cause in only a minority of cases. In this study, we analyzed exome data of PCH patients in search 
of novel causal genes and addressed the possibility of an underlying oligogenic mode of inheritance for PCH.

Materials and methods  We sequenced the exome in 28 unrelated probands with PCH, 12 of whom from families 
with at least two affected siblings and 9 of whom consanguineous, thereby increasing the contribution of genetic 
causes. Patient exome data were first analyzed for rare (MAF < 0.005) transmitted or de novo variants. Population 
stratification of unrelated PCH patients and controls was determined by principle component analysis, and outliers 
identified using Mahalanobis distance 5% as cutoff. Patient and control exome data for genes biologically related to 
cilia (SYScilia database) were analyzed by mutation burden test.

Results  In 18% of probands, we identify a causal (pathogenic or likely pathogenic) variant of a known hydrocephalus 
gene, including genes for postnatal, syndromic hydrocephalus, not previously reported in isolated PCH. In a further 
11%, we identify mutations in novel candidate genes. Through mutation burden tests, we demonstrate a significant 
burden of genetic variants in genes coding for proteins of the primary cilium in PCH patients compared to controls.

Conclusion  Our study confirms the low contribution of Mendelian mutations in PCH and reports PCH as a pheno‑
typic presentation of some known genes known for syndromic, postnatal hydrocephalus. Furthermore, this study 
identifies novel Mendelian candidate genes, and provides evidence for oligogenic inheritance implicating primary 
cilia in PCH.
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Background
Hydrocephalus refers to the abnormal accumulation 
of cerebrospinal fluid (CSF) within the cerebral ventri-
cles (ventriculomegaly) and/or subarachnoid spaces. 
Increased intracerebral pressure may cause tissue injury 
and irreparable brain damage, and hydrocephalus is 
hence a potentially devastating condition. Strikingly, in 
spite of decades of surgery for hydrocephalus, consisting 
mainly of shunting brain ventricular CSF to the perito-
neal cavity, it is often unknown whether hydrocephalus is 
a cause or consequence of brain damage [1].

Congenital hydrocephalus (CH) affects 2–8 in 10,000 
live births, with major morbidity and mortality [2]. CH 
appears very heterogeneous in its causes, with more than 
half of the cases secondary to hemorrhage, neoplasm, 
or infection, while epidemiological studies suggest a 
genetic etiology for up to 40% of CH cases [3]. In a third 
of genetic cases, hydrocephalus may occur as the sole or 
main clinical feature [4, 5], which will be defined through-
out the manuscript as primary congenital hydrocephalus 
(PCH). On the contrary, hydrocephalus can occur as part 
of a syndrome in association to other anomalies, known 
as syndromic forms of PCH.

Though many genes have been associated with syn-
dromic forms of hydrocephalus, few genes have been 
reported to cause PCH. X-linked inheritance of PCH has 
been associated with mutations in L1 cell adhesion mol-
ecule (L1CAM) [6, 7], and AP-1 complex sigma-2 subunit 
(AP1S2) [8], which encode proteins involved in neuron 
guidance and function. Autosomal recessive inheritance 
was observed with mutations in multiple PDZ domain 
protein (MPDZ) [9], coiled-coil domain-containing pro-
tein 88C (CCDC88C) [10, 11], EMAP like 1 (EML1), 
and WD repeat domain 81 (WDR81) [12]. The encoded 
proteins are, respectively, involved in synaptic plasticity, 
dendrite development, mitotic spindle orientation, and 
endolysosomal trafficking. More recently, de novo muta-
tions were also identified in a set of genes regulating neu-
ral progenitor cell fate, which account for a diagnostic 
yield of 8.5% of the studied CH cohort [13, 14]. Never-
theless, despite significant efforts to identify PCH causal 
genes, Mendelian inheritance is rare, with the majority of 
cases remaining unexplained.

Recent reports indicate that disorders previously consid-
ered as monogenic are in fact caused by mutant alleles at 
more than one locus [15–19]. Digenic inheritance has been 
described in diverse pathologies [20], among which brain 
disorders such as holoprosencephaly and microcephaly 
[16, 19]. This suggests that PCH, associated with only few 

clearly monogenic cases, might consist of an oligogenic dis-
order in at least a subset of patients.

In hydrocephalus animal models, genetic mutations 
were identified in genes encoding key proteins of motile 
or primary cilia function. Mutant mice with deficiencies 
in motile cilia axonemal proteins, such as hydin, dynein 
axonemal heavy chain 5 (Dnah5), and coiled-coil domain-
containing 151 (Ccdc151) [21–23], exhibit hydrocepha-
lus. Nevertheless, in humans, motile cilia defaults lead to 
primary cilia dyskinesia (PCD), a disorder characterized 
by chronic respiratory tract infections, situs inversus, and 
infertility, but rarely associated to hydrocephalus [24]. 
Knock-out mice for genes involved in ciliogenesis such 
as Cadherin EGF LAG Seven-Pass G-Type Receptor 2/3 
(Ceslr2/3) [25], Intraflagellar transport 88 (Ift88) [26, 27], 
and Kinesin family member 6 (Kif6) [28], all presenting 
ependymal cell cilia dysfunction, also exhibit hydrocepha-
lus. Interestingly, the involvement of primary cilia defects 
in hydrocephalus was reported in elipsa (ift54) zebrafish 
mutants [29] as well as in Ccdc88c mice mutants [30]. 
Taken together, these studies suggest a potential role for 
primary cilium defects in human PCH.

To better understand the genetic landscape of PCH, we 
studied a cohort of 28 inbred and outbred families. We first 
performed whole-exome sequencing (WES) analysis and 
identified novel mutations in known CH genes, as well as 
in three novel candidate genes. We then addressed possible 
oligogenic inheritance of PCH.

Results
We included 28 genetically undiagnosed probands in our 
study, 9 of which were from consanguineous families and 
19 were outbred. A total of 39 subjects were sequenced, 
including probands, affected siblings and parents (Addi-
tional file  1: Table  S1). WES analysis provided a molecu-
lar diagnosis in 18% of the PCH cohort, i.e., pathogenic or 
likely pathogenic variants according to ACMG guidelines 
[31], as well as the identification of three novel candidate 
genes.

WES analysis provides a molecular diagnosis in 18% 
of the PCH cohort, novel mutations are identified in genes 
associated with CH
CRADD
Two siblings of Finnish origin, presenting with mac-
rocephaly (Table  1, Additional file  1: Table  S1-15.1; 
15.2), displayed a common homozygous mutation in 
CASP2 and RIPK1 domain-containing adaptor with 
death domain (CRADD) (c.509 G > A p.(Arg170His)), as 
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reported previously [32, 33]. The p.(Arg170His) variant, 
located in the last exon of CRADD gene, was predicted 
to have a highly damaging effect on protein function, 
and yielded a combined annotation-dependent deple-
tion (CADD) score [34, 35] of 24, highest compared to 
all other variants shared by both fetuses. It was present 
at a low frequency (5.277 × 10−4) in the exome aggrega-
tion consortium [36] with 63 alleles reported, all het-
erozygous, in 17 European (Non-Finnish), 2 Other, and 
44 European (Finnish) subjects. The variant was absent 
from 1000G [37], GoNL [38], ESP6500 [39], and our in-
house database. The p.(Arg170His) substitution was pre-
viously described in a patient presenting an overlapping 
phenotype of lissencephaly and megalencephaly [40]. 
This mutation occurs at a highly conserved residue in the 
death domain of the protein spanning from amino acid 
residues 116 to 188, which participates to form a complex 
that activates Caspase2 and trigger apoptosis. The Arg-
170Cys mutation abolishes CRADD’s ability to activate 
caspase-2, resulting in reduced neuronal apoptosis, lead-
ing to megalencephaly [40]. Interestingly, another patient 
harboring a missense mutation targeting the same amino 
acid lissencephaly and megalencephaly in association to 
hydrocephalus [40]. CRADD/caspase-2 signaling plays 
an essential role in human cortical architecture, synaptic 
plasticity, and cognitive function during brain develop-
ment [32]. Apoptosis is known to be important in human 
brain development and its impairment has been associ-
ated to brain malformations [41, 42]. Indeed, ventriculo-
megaly can arise from progressive CSF accumulation due 
to peri-aqueductal neuronal stem cell hyperproliferation 
[14]. Taken together, these data suggest that the disrup-
tion of this pathway could explain the phenotype of this 
patient.

KIDINS220  In one family of consanguineous origin, 
three fetuses (Table  1, Additional file  1: Table  S1-16.1; 
16.2; 16.3) displayed ventriculomegaly and limb contrac-
tures. WES of affected fetuses and both parents revealed 
a shared homozygote mutation in kinase D interacting 
substrate 220 (KIDINS220) c.2137_2145delCAA​GTG​
CTG; p.(Gln713_Leu715del) which segregated with the 
phenotype, as reported elsewhere [43]. The three amino 
acid inframe deletion was absent from 1000G [37], GoNL 
[38], ESP6500 [39], and our in-house database as well as 
in gnomAD [44]. The aforementioned glutamine, valine, 
and leucine residues are highly conserved among mam-
mals, and fall in the binding region of Trka, an NGF 
receptor which triggers differentiation and survival path-
ways [45]. Moreover, the presented phenotype was previ-
ously reported in one family with three affected siblings, 
for which pathogenicity was attributed to a homozygous 
KIDINS220 mutation [46].

ARID1A  First trimester ultrasound revealed hydroceph-
alus with dilatation of 3rd ventricle, confirmed by foeto-
pathological exam which additionally described aque-
ductal stenosis and corpus callosum agenesis. By WES 
trio analysis, we identified a de novo frameshift mutation 
in AT-rich interaction domain 1A (ARID1A) (c.6435delG; 
p.(Glu2145fs)) (Table  1, Additional file  1: STable  1–21), 
absent from 1000G [37], GoNL [38], ESP6500 [39], our 
in-house database, and gnomAD [44]. Sanger sequenc-
ing of the affected fetus confirmed the presence of the 
frameshift, and its absence in both parents. ARID1A 
encodes a member of the SWItch/Sucrose Non-Fer-
menting (SWI/SNF) complex, mediating processes such 
as the regulation of gene expression, cellular prolifera-
tion, apoptosis, differentiation, and the repair of genetic 
material [47]. Recently, a conditional Arid1a KO mouse 
model showed that pancortical Arid1a deletion led to 
extensive mistargeting of intracortical axons and corpus 
callosum agenesis [47]. Human mutations in this gene are 
associated with Coffin–Siris syndrome (CSS), a disorder 
rarely linked to hydrocephalus. Though malformations 
such as corpus callosum agenesis have been described 
in CSS caused by pathogenic variants in ARID1A, pre-
natal anomalies are rare with almost all CSS patients 
ascertained in postnatal period [48]. However, novel fetal 
findings in association with pathogenic ARID1A variants 
recently reported, overlap the clinical presentation of our 
fetus (i.e., lung lobulation defects) [48]. Interestingly, the 
involvement of ARID1A in cancer is transposed as a puta-
tive mechanism to explain the brain malformations asso-
ciated to CSS. In cancer, pathogenic ARID1A mutations 
affect subunits of the SWI/SNF complex inducing a dis-
ruption in phosphatase and tensin homolog (PTEN) and 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha (PIKC3A) signaling, thus aberrant expres-
sion of these genes could lead to brain malformations, as 
both PTEN and PIKC3A haploinsufficiency have been 
linked to ventriculomegaly/hydrocephalus [48].

POMT2 and POMGNT1
Two unrelated fetuses presented at the time of evalu-
ation (undisclosed information and 22  weeks of gesta-
tion, respectively) with severe ventriculomegaly. In each 
proband, a homozygous mutation was found (Table  1, 
Additional file  1: Table  S1-17, 26) in genes encoding 
proteins involved in O-mannosylglycan biosynthesis. In 
the first fetus, WES analysis uncovered a homozygote 
mutation in protein O-mannosyltransferase 2 (POMT2) 
c.333 + 1 G > A, while in the second fetus a homozygote 
mutation in protein O-linked mannose N-acetylglu-
cosaminyltransferase 1 (POMGNT1) c.1539 + 1 G > A 
was found. Both mutations were predicted pathogenic 
with respective pathogenic CADD scores of 24.8 and 
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22.8, and resided in splice site donors, which in gen-
eral leads to single exon skipping [49]. In POMGNT1, 
the impacted exon lies in the proteins catalytic region, 
while in POMT2 it lies within the transmembrane heli-
ces of the protein. POMT2 and POMGNT1 are involved 
in two clinically similar disorders, respectively Walker–
Warburg syndrome (WWS) and muscle–eye–brain dis-
ease (MEB) [50, 51]. Both are linked to a severe neuronal 
migration disorder associated with hydrocephalus and 
muscular dystrophy, though the physiopathology is usu-
ally less severe in MEB [52–55]. Several studies indicate 
that O-mannosylation of alpha-dystroglycan (⍺-DG), a 
highly glycosylated surface membrane protein, plays an 
important role in muscle and brain development [50, 56]. 
Indeed, in WWS patients, the highly glycosylated ⍺-DG 
was selectively deficient in skeletal muscle and brain [57].

Three new potential candidate genes revealed by WES 
analysis
RNPC3
In a consanguineous family of Turkish origin, a homozy-
gous missense variant in RNA binding region con-
taining 3 (RNPC3) c.1328A > G; p.(Tyr443Cys) was 
identified in two affected fetuses (Fig.  1A, Additional 

file  1: Table  S1-28.1; 28.2). Familial segregation was 
confirmed by Sanger sequencing. The variant falls into 
a homozygote stretch of 12 Mbp ranging from posi-
tion chr1: 100.984.092–113.000.946. The variant was 
not reported in gnomAD [44], and the exon harboring 
the mutation is predicted intolerant to variation. The 
variant was predicted deleterious with a CADD score of 
16.94. Interestingly, a recent article describes a patient 
with severe growth delay, and anatomic brain anomalies 
including an enlargement of the peri-cerebral spaces, in 
which the same RNPC3 variant was identified [59] The 
tyrosine residue is a well-conserved amino acid in the 
RNA recognition motif 2 (RRM2) involved in the bind-
ing of RNPC3 to small nuclear RNAs. Indeed, RNPC3 
gene encodes for a component the pre-mRNA splicing 
machinery, the minor (U12-dependent) spliceosome 
complexes, reported to target around 700–800 genes 
[60].

TIE1
A homozygote variant in tyrosine kinase with immuno-
globulin like and EGF like domains 1 (TIE1) c.2459 G > A; 
p.(Arg820Gln) was identified in an consanguineous fam-
ily (Fig.  1B, Additional file  1: Table  S1-10). The variant 

Fig. 1  Schematic representation of the three potential candidate genes and their respective family tree. Family trees showing proband 28.1 (A), 
proband 10 (B) and proband 22 (C), and their respective genotypes. The dotted line represents adoption. Schematic representation of the proteins’ 
domains and position of variants in candidate genes are indicated. Image created with BioRender.com
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was absent from all data databases, and was predicted 
to yield a damaging effect on the protein. Harboring a 
CADD score of 32, this variant was the most deleteri-
ous homozygote variant identified in the patient. Indeed, 
bioinformatic predictions (https://www.mutationtaster.
org/;https://hsf.genomnis.com/; http://wangcomputing.
com/assp/) show that the missense mutation could intro-
duce a new splice site, affecting RNA splicing.

DNAH2
In one patient (Fig.  1C, Additional file  1: Table  S1-22) 
presenting with triventricular hydrocephalus, a brain 
cyst, encephalocele, and an incomplete cerebellum, we 
identified a compound heterozygote variant in dynein 
axonemal heavy chain 2 (DNAH2), encoding a heavy 
chain subunit of the inner dynein arm-f (dynein f ), a 
component of motile cilia [61]. The NM_020877.2: 
c.2493C > A; p.(Pro345Thr) and c.12834G > A; 
p.(Val3792Ile) variants harbored respective CADD 
scores of 26 and 15, and both were absent from 1000G 
[37], GoNL [38], ESP6500 [39], and our in-house data-
base. The first variant p.(Pro345Thr) lies within the 
STEM domain of the protein involved in interaction with 
other dynein components. DNAH2 is part of the axone-
mal inner dynein arm complex and plays a central role 
in ciliary beating [61]. Notably, compound heterozygote 
variants (NM_020877.2: c.2190C > T, p.(Arg244Trp) / 
c.7192G > C, p.(Gly1911Ala); c.3246C > T, p.(Arg596X) / 
c.4696A > G, p.(Asp1079Gly)) were found in two different 
probands presenting primary microcephaly [62].

Oligogenic inheritance: patients with PCH display 
an excess of variants in primary cilia genes
Although WES analysis rendered a molecular diagno-
sis for 18% of our cohort, a significant number of cases 
remained unsolved, for whom we suspected non-Men-
delian modes of inheritance. Many animal models which 
present hydrocephalus as main feature are models in 
which motile cilia genes are impaired [63, 64], though 
the impairment of the same group of genes in humans is 
responsible for PCD, a ciliopathy rarely associated with 
hydrocephalus [65, 66]. Conversely, there is some recent 
evidence linking primary cilia defects and hydrocephalus 
[29].

We therefore compared the burden of variants in ciliary 
genes, obtained from the SYScilia database [67], between 
our patient and control groups. This analysis was con-
ducted using the complete gene list comprised of 304 
genes, and on a subdivision of the latter (in two subsets 
of genes linked to motile and primary cilia). The variants 
were filtered as described in the Methods section, for 
various allelic frequencies (AFs < 0.5, 1, 3, 5, 10, and 30%). 
Principal component analysis (PCA) was used to identify 

potential outliers in 25 unrelated PCH patients and 166 
control patients with non-neurological disorders based 
on the Mahalanobis distance (MD). The MD is a distance 
metric that allows inference of the distance of a point 
with regard to a multivariate distribution (PCA) while 
employing the covariance structure [68]. Here, we used 
a robust version of MD which computes the distance (in 
terms of deviation from the multivariate centroid) for 
each data point and we set a cutoff value based on the 
distribution of those distances [69]. The points with dis-
tances greater than the cutoff are deemed to be outliers. 
MD with a significance level of 5% (MD5%) was applied 
to the two first principal components of the PCA, mean-
ing that 5% of the most extreme data points were consid-
ered as outliers. This analysis conserved 23 patients and 
155 controls (Fig.  2A) and excluded 2 patients and 11 
controls as they were considered as outliers.

The mutation burden test revealed a statistically sig-
nificant burden in PCH patients in ciliary genes and 
more particularly in primary ciliary genes, over a range 
of AF (< 3%, < 5%), consistent with oligogenic inherit-
ance (Fig.  2B). Interestingly, we maintain significance for 
AF < 10% in primary cilia. The smallest p value (p = 0.0082) 
was observed in the primary cilia subset of genes at an 
AF < 5% with MD5% cutoff (Fig. 2B, C, lower right panel).

The same trend was maintained in the cohort prior to 
PCA analysis, where PCH patients displayed a higher 
number of allelic variants in the primary cilia genes for 
AF < 3% and above (Fig. 2B).

As a control, we measured the burden of allelic vari-
ants in housekeeping genes among PCH and control 
patients for all conditions which gave a significant p value 
and observed no significant difference between the two 
groups (Fig.  2C, right panels). To exclude the effect of 
chance in the selection of the ciliary genes, 10,000 permu-
tations were performed with either 304 or 253 randomly 
chosen housekeeping genes (Additional file 1: Figure S1). 
A significance level of α = 0.05 was considered, with an 
expected value of less than 500 subsets of housekeeping 
genes resulting in a significant Wilcoxon statistics (10,000 
trials * 0.05). The number of subsets of housekeep-
ing genes yielding a Wilcoxon statistic with a smaller p 
value than for the ciliary genes was counted (Additional 
file  1: Figure S2). Respectively, only 278 (AF < 3%) and 
122 (AF < 5%) random selections of housekeeping genes 
resulted in a significant p value with MD5% (Fig. 2B). In 
other words, only 2.8% and 1.2% of randomly chosen lists 
harbor a smaller p value compared to the corresponding 
burden test p value obtained with the ciliary gene lists. 
The same analysis conducted on the total cohort gave 314 
and 142 random selections of housekeeping genes with a 
significant p value (Fig. 2B). These results allow us to vali-
date with a probability of 95% that the burden of variants 
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observed in our PCH patients is not due to random gene 
selection.

Digenic viewpoint: VarCoPP analysis
Finally, patients’ results were re‐examined individually, 
from a digenic viewpoint, in search of potential cases 

of pathogenic combinations of two or more variants. A 
search for common digenic pairs among hydrocepha-
lus patients was also conducted, but did not uncover 
any conclusive results, possibly due to the modest size 
of the cohort. The pathogenic pairs in the 99% confi-
dence interval obtained by VarCoPP for each individual 

Fig. 2  PCH patients display a burden of variants in primary ciliary genes. A Plot represents the distribution of patients and controls used in 
mutation burden test analysis. Each dot represents a sample (exome sequencing data) and each color represents a type of sample: patients (red 
circles) and controls (gray circles). The square englobes the subset of patients and controls determined by MD5% cutoff. B Calculated p values by 
Wilcoxon test for mutation burden tests (Burden p value) and on 10,000 permutation test (PT p value) at different allelic frequencies (AFs) with or 
without cutoff at MD5%. *p value ≤ 0.05, **p value ≤ 0.01. C (upper panels) Variants in 253 primary cilia genes (left) and in 253 housekeeping genes 
(right) identified via exome sequencing filtered for AF < 3% in patients and controls with or without MD5% cutoff. (Lower panels) Variants in 253 
primary cilia genes (left) and in 253 housekeeping genes (right) identified via exome sequencing filtered for AF < 5% in patients and controls with or 
without MD5% cutoff
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patient were evaluated using bioinformatic databases 
such as PubMed, OMIM, and ClinVar. In addition, we 
took advantage of the ORVAL [70] platform to explore 
the predicted digenic effect of the pathogenic pairs. As 
a result, a candidate pair composed of primary ciliary 
genes was predicted to have a digenic effect (Additional 
file 1: Table S2).

The candidate pair is predicted as true digenic by the 
digenic effect predictor [71] in ORVAL, meaning that the 
presence of variants in both genes is required to trigger 
the disease phenotype. The first variant falls in the Intra-
flagellar transport 172 (IFT172) gene (p.Asp907Asn), and 
is absent from 1000G [37], GoNL [38], ESP6500 [39], and 
our in-house database as well as in gnomAD [44] and 
harbors a CADD score of 25.5. The second variant com-
posing the pathogenic pair in tetratricopeptide repeat 
domain 21B (TTC21B) (p.Pro753Leu) was also absent 
from all aforementioned databases and harbors a CADD 
score equal to 23.3. IFT172 is part of the IFT-B com-
plex and TTCB21 of the IFT-A complex, respectively, 
responsible for anterograde and retrograde intraflagellar 
transport [72], necessary for the structure and functional 
integrity of the cilium.

Discussion
In this study, we report the analysis by WES of a PCH 
cohort of 28 families, 9 of which were inbred and 19 out-
bred. Almost half of the PCH probands included in this 
study were from families where two or more cases had 
been described (13 families), which increased the likeli-
hood of a genetic contribution.

A molecular diagnosis following Mendelian inherit-
ance was found in four families with novel mutations 
in known genes: KIDINS220, POMT2, POMGNT1 and 
ARID1A (Table 1). In one sibship, we identified a previ-
ously described homozygous mutation in CRADD [40] 
(Table  1). In some patients who presented prenatally 
with ventriculomegaly, we identified variants in genes for 
which hydrocephalus was already reported but as a post-
natal feature of a complex syndrome. Some of these cases 
revealed a posteriori to consist of syndromic associations 
with hydrocephalus, though ventriculomegaly appeared 
at the time as the major echographic finding. Indeed, 
hydrocephalus, albeit the hallmark for the diagnosis of 
WWS, appears on the prenatal ultrasound mostly in the 
third trimester [73]. Cases as these reflect the need to 
include such patients in routine syndromic hydrocepha-
lus genetic screening. Other cases underscore the impor-
tance to better describe prenatal features of well-known 
postnatal phenotypes, e.g., ARID1A. This effort will be 
important to validate which genes should be included in, 
or excluded from, diagnostic panels for fetal medicine.

Furthermore, WES analysis allowed the identifica-
tion of apparently Mendelian mutations in three new 
candidate genes, RNPC3, TIE1 and DNAH2, each of 
these belonging to cellular processes previously linked 
to human or mice PCH phenotype, and ubiquitously 
expressed in brain, albeit with lower expression levels for 
DNAH2 (https://​www.​prote​inatl​as.​org).

The tyrosine residue variant in RNPC3 p.(Tyr443Cys) 
is a well-conserved amino acid in the RNA recogni-
tion motif 2 (RRM2) involved in binding small nuclear 
RNAs. RNPC3 is a component of one of the minor 
(U12-dependent) spliceosome complex, reported to 
act on 700–800 RNAs [60]. A zebrafish mutant, caliban 
(clbn), harboring a splicing mutation in the same RRM2 
domain of rnpc3, leads to a severe and pleiotropic phe-
notype in developing zebrafish larvae with early lethality 
[74]. The authors showed that several genes involved in 
various steps of mRNA processing, including transcrip-
tion, splicing, and nuclear export are disrupted in clbn 
mutants. Interestingly, of the 38 downregulated genes, 4 
are associated with human pathologies wherein hydro-
cephalus is a feature [74]. Though in human [75] and 
mice models [76, 77] defects in minor spliceosome com-
ponents are associated with several disorders charac-
terized by microcephaly and dwarfism, a recent report 
describes a case of severe ventriculomegaly and mild 
growth retardation associated with compound heterozy-
gote mutations in the non-coding region of RNA, U4atac 
Small Nuclear (RNU4ATAC) [78]. In parallel, a recent 
study in 9 outbred families identified mutations in splice-
osome genes peptidylprolyl isomerase like 1 (PPIL1) and 
pre-RNA processing-17 (PRP17) causing neurodegen-
erative pontocerebellar hypoplasia with microcephaly, 
where one of the probands presented both microcephaly 
(-4SD) and hydrocephalus[79]. Taken together, these data 
support RNPC3 as a likely candidate for PCH.

Exome analysis of a second consanguineous fam-
ily revealed a homozygote variant in TIE1, predicted to 
introduce a new donor splice site resulting in aberrant 
RNA splicing. This angioprotein receptor plays a critical 
role in angiogenic events such as blood vessel homeosta-
sis and endothelial cell survival and in lymphangiogenesis 
[80]. The major impact in Tie−/− mice is on the formation 
of lymphatic vasculature, with embryos also presenting 
hemorrhage, both causing death during gestation [81]. In 
zebrafish, decreasing the expression of tie1 mRNA corre-
lates with significantly increased eye size and ventricular 
space [82]. Moreover, defects in angiogenesis compo-
nents such as FLVCR heme transporter 2 (FLVCR2) and 
Vascular endothelial growth factor (VEGF) in humans 
have been linked to hydrocephalus [79, 83, 84].

To date, autosomal recessive mutations in DNAH2 
have been associated morphological abnormalities of the 

https://www.proteinatlas.org
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sperm flagella responsible of male infertility [85]. Deple-
tion of either Dnah2 or WD repeat domain 78 (Wdr78), 
another dynein f subunit, by RNAi in mouse ependymal 
cells resulted in increased incidence of paralyzed motile 
cilia, and interestingly, knockdown wdr78 zebrafish lar-
vae displayed hydrocephalus [61]. Moreover, in 2016 Ha 
et  al. characterized two hydrocephalus mouse mutants 
by WES after whole-genome SNP mapping and revealed 
novel recessive mutations in two genes encoding for 
structural components of the motile cilia axoneme, 
dynein axonemal assembly factor 1 (Dnaaf1) and leucine-
rich repeat-containing protein 48 (Lrrc48) [86].

Through WES analysis, Mendelian mutations were 
found in a minority of PCH probands in our cohort 
(18%), leaving the majority of cases unexplained. From 
this observation and the fact that animal models are 
compatible with a more complex heredity, we hypoth-
esized that missing heritability of PCH could, at least in 
a number of cases, lie within oligogenic inheritance. In 
double transgenic mouse model Tg(Lmo3;Hen2), 15% of 
either Tg(Lmo3) or Tg(Hen2) pups developed hydroceph-
alus, whereas all double heterozygote pups presented 
with hydrocephalus [87]. Moreover, increasing evidence 
in animal models shows implication of ciliary genes, 
responsible for cilia biogenesis/maturation, in hydro-
cephalus. To study the implication of ciliary genes under 
an oligogenic model as an underlying cause of PCH, we 
performed mutation burden tests and provide evidence 
of such inheritance implicating ciliary genes. After clus-
tering analysis using PCA and a MD5% cutoff, WES data 
of 23 unrelated PCH patients and 155 controls were com-
pared by burden test of variants in ciliary genes in both 
motile and primary ciliary genes.

We observed a statistically significant mutation bur-
den in PCH patients found over a range of allele frequen-
cies, particularly in primary cilia genes, suggesting that 
the primary cilium could be an essential component in 
hydrocephalus pathogeny. The major roles of primary 
cilia include sensory perception, signal transduction, and 
cell cycle progression.

Recent key observations showed that protein products 
of genes mutated in murine hydrocephalus are localized 
to the primary cilium. For example, defaults in centro-
somal protein Cep290 or intraflagellar transport (IFT) 
components such as Kinesin family member 3a (Kif3a), 
Ift188 and Ttc21b, impair primary cilia formation/sign-
aling in turn disrupting ependymal cilia and leading 
to hydrocephalus in mice [88–90]. Moreover, cilium-
less radial glia conditional mutants display increased 
mTOR signaling which leads to enlarged apical domains 
of radial glial cells (RGCs) and subsequent dilatation of 
brain ventricles [91]. More recently, deletion of Gpr161 
cilia-localized G-protein coupled receptor in mouse 

neuroepithelial cells and RGCs at early mid-gestation-
induced derepression of Sonic Hedgehog (SHH) signal-
ing, leading to hydrocephalus at birth [92]. Finally, the 
primary cilium is essential in planar cell polarity (PCP), 
allowing establishment of a polarity axis which organizes 
cells in the plane of the tissue [93–95]. PCP is also essen-
tial for tissue homeostasis [96] and the directional beat-
ing of motile cilia. The Ccdc88c mice model, with the loss 
of PCP of ependymal cells, leads to abnormal ependymal 
flow and hydrocephalus [30]. Indeed, the correct posi-
tioning of the primary cilium through translational polar-
ity, at the apical surface of the cell, is mandatory for the 
correct establishment and proper beating of the motile 
cilia [97].

We used ORVAL [70], a novel web platform which pre-
dicts the potential pathogenicity of an individual’s oligo-
genic variant combinations. One patient was identified 
with a true digenic combination IFT172-TTC21B, within 
the 99% confidence interval. Both genes encode compo-
nents of the IFT complex, B and A, respectively. The high 
CADD scores of both variants as well as their close bio-
logical distance could explain the high disease-causing 
confidence generated by ORVAL. These results are rein-
forced by the absence of the same variant combination 
in the 155 controls and the association of both genes in 
mutated animal models with hydrocephalus. Both mice 
and zebrafish animal models carrying an Ift172 mutation 
displayed hydrocephalus. Indeed, a recessive  N-ethyl,N-
nitrosurea (ENU)-induced hypomorphic mutation in 
Ift172 in mice caused VACTERL syndrome associ-
ated with hydrocephalus [98], and an ift172 knockdown 
zebrafish model displayed anomalies including ventral 
body curvature and hydrocephalus [99]. In a mice model 
where Ttc21b was ablated in brain and surrounding 
domains, embryos displayed an enlarged forebrain and 
ventriculomegaly of the lateral ventricles [89]. Hence, we 
suggest that the predicted pathogenic combination could 
explain the observed phenotype in this sibship.

Conclusion
In conclusion, we report novel mutations in known 
hydrocephalus genes in 18% of our PCH probands and 
propose three novel candidate genes: DNAH2, TIE1 and 
RNPC3 in a further 11%. Mutations in genes known for 
postnatal, syndromic hydrocephalus presented as iso-
lated PCH in some of our probands. We furthermore 
report evidence of oligogenic inheritance implicating 
the primary cilium as an important player in PCH. In 
one patient, we identified a true digenic combination 
where both gene products are implicated in intraflagel-
lar transport in primary cilia and, when mutated in ani-
mal models, are associated to hydrocephalus. Our data 
will contribute to identifying novel Mendelian genes; 
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including or excluding genes from clinical diagnostic 
panels in fetal medicine; and precising the role of pri-
mary cilia in brain developmental disorders.

Patients and methods
Patient cohort collection
The study was approved by the Department of Scien-
tific Research and Ethics Committee of Erasme Hospi-
tal in Belgium under the reference P2019/056. Written 
informed consent from the patients or legal representa-
tives was obtained. The probands of these families were 
referred to us by national and international genetic or 
obstetric departments, based on the following inclu-
sion criteria: primary congenital hydrocephalus with-
out L1CAM mutation, abnormal karyotype, or known 
syndromes (Supplementary Table 3). Included probands 
presented with PCH that was either isolated or associ-
ated with brain malformations. CGH array and/or karyo-
type, as well as L1CAM sequencing were performed in 
all patients before referral. Medical history, clinical and 
radiological assessments were obtained by the referring 
physicians. We included 28 families in our study, 9 of 
which were inbred and 19 were outbred, and performed 
a total of 39 exomes (28 probands and 11 relatives) (Sup-
plementary Table 1).

Preparation of gDNA and whole‑exome sequencing
Genomic DNA was extracted from either cultured 
amniotic fluid cells or from umbilical cord cells. DNA 
of unaffected relatives was extracted from peripheral 
blood. Patients’ genomic DNA was sheared and exonic 
sequences were captured using a DNA capture kit. For 
WES, DNA samples were prepared in Illumina libraries 
and then underwent whole-exome enrichment with the 
NimbleGen Seqcap EZ v3, Agilent SureSelect All Exon 
v1 and Agilent SureSelect All Exon v5. DNA sequenc-
ing platforms varied according to the time of the analy-
sis. Two sequencing platforms were used: AROS applied 
biotechnology, Denmark (Illumina HiSeq 2000) and 
BRIGHTcore Brussels Interuniversity Genomics High 
Throughput core, Brussels, Belgium (Illumina HiSeq 
1500).

Variant classification
Dry-lab processing, base calling of the raw sequencing 
data, primary sequence analysis and variant calling was 
performed at the Interuniversity Institute of Bioinfor-
matics in Brussels ((IB)2; Brussels, Belgium). In brief, raw 
sequences were aligned to the reference genome GRCh37 
using BWA algorithm version 0.7.15 [100], duplicated 
reads were then marked using Picard version 1.97 [101], 
alignment quality was improved using the GATK [102] 

realigner and base recalibrator version 2.7 and finally, 
variants were called using GATK Haplotype Caller ver-
sion 2.7. The resulting variant set was annotated and fil-
tered using the Highlander software (https://​sites.​uclou​
vain.​be/​highl​ander/​index.​html). Variants were filtered for 
quality criteria (pass GATK standard filter, read depth > 5, 
variant confidence by depth ≥ 10), allelic frequency 
(AF) < 0.5% (based on the maximum minor AF found 
in ExAC [36], 1000G [37], ESP6500 [39], gonl [103], 
ARIC5606 [104] and our in-house database), nonsyn-
onymous or splice junction effect in protein coding genes 
(using biotype from Ensembl [105] and snpeff_effect 
from SnpEff [106]), and genotype (homozygous or hete-
rozygous variants). Variants were then sorted by decreas-
ing combined annotation-dependent depletion (CADD) 
score and consensus score, corresponding to a combined 
pathogenicity score from the six different predictors 
included in the Highlander software. 1 point was given 
for each of the six prediction software (Mutation Taster, 
Sift, Polyphen2, LTR, Mutation Assessor, FATHMM) 
when the variant is predicted to be pathogenic. Addi-
tional points were given based on type of mutation with 
the highest score given to frameshift and nonsense pre-
dicted effect (snpeff_effect). Variants were inspected 
manually based on scientific literature and genome data-
bases data, and variant curation followed the American 
College of Medical Genetics and Genomics (ACMG) 
guidelines. Variants of interest were then confirmed by 
Sanger sequencing and familial segregation was under-
taken when possible. Possible candidate genes have been 
submitted to the online Matchmaker exchange platform.

Sanger sequencing
ExonPrimer software (http://​ihg.​helmh​oltz-​muenc​hen.​
de/​ihg/​ExonP​rimer.​html) was used for PCR primer 
design (Supplementary Table  4). All exons and flanking 
intronic regions of the candidate genes were sequenced 
by the Sanger method using the Big Dye Terminator cycle 
sequencing kit v2 (Applied Biosystems, Foster City, Cali-
fornia, USA), and analyzed on a 3130 Genetic Analyser 
sequencing machine (Applied Biosystems). Sequences 
were analyzed in silico for mutations using Blast (https://​
blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi).

Mutation burden analysis
Genes biologically related to cilia were obtained from 
SYScilia database [67] (https://.Syscilia database.
com). These genes were separated into two subsets of 
genes regarding their involvement in either primary 
or in motile cilia (Supplementary Table  5). The cover-
age of the selected genes in the exome was above 70% 
(exon_coverage_20x) except for SHH with a respective 

https://sites.uclouvain.be/highlander/index.html
https://sites.uclouvain.be/highlander/index.html
http://ihg.helmholtz-muenchen.de/ihg/ExonPrimer.html
http://ihg.helmholtz-muenchen.de/ihg/ExonPrimer.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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coverage of 59%. As control genes for permutations 
tests, 1,926 housekeeping genes identified in at least 
seven different studies (detective breadth ≥ 7; [107]) 
were used.

WES data from 25 unrelated hydrocephalus patients 
and 166 in-house controls, composed of patients pre-
senting pathologies other than cerebral and their rela-
tives, were used for the genetic mutation burden test 
analysis.

Population stratification of unrelated hydrocephalus 
patients and control patients was determined by prin-
cipal component analysis (PCA) using PLINK software 
[108]. Mahalanobis distance (MD) with a significance 
level of 5% was used to identify potential outliers.

A genetic mutation burden test was used to assess if 
there was a significant excess of variants in ciliary genes 
in our patients compared to controls. WES data of con-
trols and cases were analyzed to search for variants 
in genes related to ciliary structure. Variants were fil-
tered for quality criteria (pass GATK [102] standard fil-
ter, read depth ≥ 10), AF (< 30%, 10%, 5%, 3%, 1%, 0.5% 
based on the maximum minor allele frequency found 
in ExAC [36], 1000G [37], ESP650 [39], GoNL [38], 
ARIC5606 [104], and our in‐house database) and muta-
tion impact using snpeff_effect [106].

The genetic burden was analyzed using an in-house 
developed program in Python (https://​www.​python.​
org/). Statistical significance was measured by com-
paring the genetic burden of our patients to controls 
using a nonparametric Wilcoxon test. Precisely, for 
each patient or control, the number of allelic variants 
in ciliary genes was counted, with homozygous vari-
ants counting as two allelic variants. A permutation 
test with 10,000 random selections of 304 or 253 house-
keeping genes was performed to exclude the effect of 
chance in all/primary cilia gene selection, respectively. 
A mutation burden was measured and the Wilcoxon 
statistic for independent samples was calculated for 
each of the 10,000 selections. The number of subsets of 
housekeeping genes, yielding a Wilcoxon statistic with 
a smaller p value than for the ciliary genes, was counted 
and divided by 10,000. This value was set as the p value 
for the permutation tests. An explanatory scheme is 
available in Additional file 1: Fig. S1.

Predicting disease‑causing variant combinations using 
ORVAL platform
Prediction of potentially disease-causing combinations 
was performed using VarCoPP [70, 109] on an in-house 
cluster. VarCoPP is designed to process alleles in pairs 
to prioritize disease-causing combinations. This classi-
fier, trained on digenic cases contained in the digenic 
disease database (DIDA) [110], uses 11 features at the 

variant (e.g., CADD raw scores), gene (e.g., haploinsuf-
ficiency) and gene-pair level (e.g., biological distance). 
Specifically, 500 random forest predictors constitute 
VarCoPP, where each individual predictor classifies a 
given variant combination. Two scores are assigned 
to each combination, the classification score CS (i.e., 
median probability calculated over all the pathogenic 
probabilities provided by the ensemble of predictors) 
and the support score SS (i.e., percentage of the 500 
predictors that deem the combination pathogenic). 
Thresholds are defined with regard to these two scores 
to create confidence zones. We considered bi-locus 
variant combinations that fells in the 99% confidence 
zone (CS ≥ 0.74; SS = 100%). These combinations were 
further inspected using the ORVAL plateform (https://​
orval.​isqua​re.​be) [70], which incorporates VarCoPP 
[109].
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