116 research outputs found
Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions
Epigenetic drug Gar1041 in combination with antiretroviral therapy transiently reduces the proviral DNA reservoir in SIVmac251-infected macaques
Merkel cell polyomavirus (MCPyV) in the context of Immunosuppression. Genetic analysis of noncoding control region (NCCR) variability among a HIV-1-positive population
Background: Since limited data are available about the prevalence of Merkel cell polyomavirus (MCPyV) and the genetic variability of its noncoding control region (NCCR) in the context of immunosuppression, this study aimed to investigate the distribution of MCPyV in anatomical sites other than the skin and the behavior of NCCR among an HIV-1-positive population. Methods: Urine, plasma, and rectal swabs specimens from a cohort of 66 HIV-1-positive patients were collected and subjected to quantitative real-time polymerase chain reaction (qPCR) for MCPyV DNA detection. MCPyV-positive samples were amplified by nested PCR targeting the NCCR, and NCCRs alignment was carried out to evaluate the occurrence of mutations and to identify putative binding sites for cellular factors. Results: MCPyV DNA was detected in 10/66 urine, in 7/66 plasma, and in 23/66 rectal samples, with a median value of 5 × 102 copies/mL, 1.5 × 102 copies/mL, and 2.3 × 103 copies/mL, respectively. NCCR sequence analysis revealed a high degree of homology with the MCC350 reference strain in urine, whereas transitions, transversions, and single or double deletions were observed in plasma and rectal swabs. In these latter samples, representative GTT and GTTGA insertions were also observed. Search for putative binding sites of cellular transcription factors showed that in several strains, deletions, insertions, or single base substitutions altered the NCCR canonical configuration. Conclusions: Sequencing analysis revealed the presence of numerous mutations in the NCCR, including insertions and deletions. Whether these mutations may have an impact on the pathogenic features of the virus remains to be determined. qPCR measured on average a low viral load in the specimens analyzed, with the exception of those with the GTTGA insertion
NGF inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation and cytochrome c release.
Implementing a school-based comprehensive sexual health education intervention in Italy: experiences from the field
Introduction:
This study describes the preliminary results of a School-based sexuality education (SBSE) pilot activity developed and implemented within EduForIST project, funded by the Italian Ministry of Health.
Methods:
The pilot activity (5 modules of 2 hours each delivered per classroom) targeted lower secondary schools students. A total of 20 schools located in 4 different Italian regions participated. The educators were staff of several HIV/AIDS civil society organisations operating in Italy. A 2-days intensive workshop for educators was performed. Pre and post tests were conducted.
Results:
At the time of submission, pre-test results were available from 14 classrooms of 5 schools within 2 Italian Regions, for a total of 266 students. Among these, 37,4% were unsure that personal identity is built through social comparison; 21,8% reported that emotions don't get more intense during adolescence, while 18,1% were unsure about the response; 42,1% reported a higher level of uncertainty concerning the definitions of gender identity, sexual orientation and stereotype. The highest level of uncertainty were reported for STIs symptoms (58,7%), impact of treatment on HIV+ people (61,9%) and efficacy of contraceptive pills in preventing STIs (43,4%). The post-test results were available for 153 students. Pre/post analysis showed an increase of correct answers (p < 0.05) for 12 of 15 items investigated. A total of 102 students responded to the satisfaction questionnaire, with preliminary positive results.
Conclusions:
Since activities are ongoing, further data will be soon available for more exhaustive analyses. Early pre/post evaluations suggested that the pilot experience was effective in enhancing knowledge and decreasing uncertainty in the different domains addressed in the pilot. Evidence collected through this study shall raise awareness among decision makers on the urgency of introducing CSE in Italian school curricula and inform future policy options
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
Tracking the progressive spread of the SARS-CoV-2 Omicron variant in Italy, December 2021 to January 2022.
BackgroundThe SARS-CoV-2 variant of concern Omicron was first detected in Italy in November 2021.AimTo comprehensively describe Omicron spread in Italy in the 2 subsequent months and its impact on the overall SARS-CoV-2 circulation at population level.MethodsWe analyse data from four genomic surveys conducted across the country between December 2021 and January 2022. Combining genomic sequencing results with epidemiological records collated by the National Integrated Surveillance System, the Omicron reproductive number and exponential growth rate are estimated, as well as SARS-CoV-2 transmissibility.ResultsOmicron became dominant in Italy less than 1 month after its first detection, representing on 3 January 76.9-80.2% of notified SARS-CoV-2 infections, with a doubling time of 2.7-3.3 days. As of 17 January 2022, Delta variant represented < 6% of cases. During the Omicron expansion in December 2021, the estimated mean net reproduction numbers respectively rose from 1.15 to a maximum of 1.83 for symptomatic cases and from 1.14 to 1.36 for hospitalised cases, while remaining relatively stable, between 0.93 and 1.21, for cases needing intensive care. Despite a reduction in relative proportion, Delta infections increased in absolute terms throughout December contributing to an increase in hospitalisations. A significant reproduction numbers' decline was found after mid-January, with average estimates dropping below 1 between 10 and 16 January 2022.ConclusionEstimates suggest a marked growth advantage of Omicron compared with Delta variant, but lower disease severity at population level possibly due to residual immunity against severe outcomes acquired from vaccination and prior infection
Cocaine-induced renal infarction: report of a case and review of the literature
BACKGROUND: Cocaine abuse has been known to have detrimental effects on the cardiovascular system. Its toxicity has been associated with myocardial ischemia, cerebrovascular accidents and mesenteric ischemia. The pathophysiology of cocaine-related renal injury is multifactorial and involves renal hemodynamic changes, alterations in glomerular matrix synthesis, degradation and oxidative stress, and possibly induction of renal atherogenesis. Renal infarction as a result of cocaine exposure, however, is rarely reported in the literature. CASE PRESENTATION: A 48 year-old male presented with a four-day history of severe right flank pain following cocaine use. On presentation, he was tachycardic, febrile and had severe right costovertebral angle tenderness. He had significant proteinuria, leukocytosis and elevated serum creatinine and lactate dehydrogenase. Radiographic imaging studies as well as other screening tests for thromboembolic events, hypercoagulability states, collagen vascular diseases and lipid disorders were suggestive of Cocaine-Induced Renal Infarction (CIRI) by exclusion. CONCLUSION: In a patient with a history of cocaine abuse presenting with fevers and flank pain suggestive of urinary tract infection or nephrolithiasis, cocaine-induced renal infarction must be considered in the differential diagnosis. In this article, we discuss the prior reported cases of CIRI and thoroughly review the literature available on this disorder. This is important for several reasons. First, it will allow us to discuss and elaborate on the mechanism of renal injury caused by cocaine. In addition, this review will demonstrate the importance of considering the diagnosis of CIRI in a patient with documented cocaine use and an atypical presentation of acute renal injury. Finally, we will emphasize the need for a consensus on optimal treatment of this disease, for which therapy is not yet standardized
Evaluation of humoral and cellular response to four vaccines against COVID-19 in different age groups: A longitudinal study
To date there has been limited head-to-head evaluation of immune responses to different types of COVID-19 vaccines. A real-world population-based longitudinal study was designed with the aim to define the magnitude and duration of immunity induced by each of four different COVID-19 vaccines available in Italy at the time of this study. Overall, 2497 individuals were enrolled at time of their first vaccination (T0). Vaccine-specific antibody responses induced over time by Comirnaty, Spikevax, Vaxzevria, Janssen Ad26.COV2.S and heterologous vaccination were compared up to six months after immunization. On a subset of Comirnaty vaccinees, serology data were correlated with the ability to neutralize a reference SARS-CoV-2 B strain, as well as Delta AY.4 and Omicron BA.1. The frequency of SARS-CoV-2-specific CD4+ T cells, CD8+ T cells, and memory B cells induced by the four different vaccines was assessed six months after the immunization. We found that mRNA vaccines are stronger inducer of anti-Spike IgG and B-memory cell responses. Humoral immune responses are lower in frail elderly subjects. Neutralization of the Delta AY.4 and Omicron BA.1 variants is severely impaired, especially in older individuals. Most vaccinees display a vaccine-specific T-cell memory six months after the vaccination. By describing the immunological response during the first phase of COVID-19 vaccination campaign in different cohorts and considering several aspects of the immunological response, this study allowed to collect key information that could facilitate the implementation of effective prevention and control measures against SARS-CoV-
A 12-month follow-up of the immune response to SARS-CoV-2 primary vaccination: evidence from a real-world study
A real-world population-based longitudinal study, aimed at determining the magnitude and duration of immunity induced by different types of vaccines against COVID-19, started in 2021 by enrolling a cohort of 2,497 individuals at time of their first vaccination. The study cohort included both healthy adults aged ≤65 years and elderly subjects aged >65 years with two or more co-morbidities. Here, patterns of anti-SARS-CoV-2 humoral and cell-mediated specific immune response, assessed on 1,182 remaining subjects, at 6 (T6) and 12 months (T12) after the first vaccine dose, are described. At T12 median anti-Spike IgG antibody levels were increased compared to T6. The determinants of increased anti-Spike IgG were the receipt of a third vaccine dose between T6 and T12 and being positive for anti-Nucleocapside IgG at T12, a marker of recent infection, while age had no significant effect. The capacity of T12 sera to neutralize in vitro the ancestral B strain and the Omicron BA.5 variant was assessed in a subgroup of vaccinated subjects. A correlation between anti-S IgG levels and sera neutralizing capacity was identified and higher neutralizing capacity was evident in healthy adults compared to frail elderly subjects and in those who were positive for anti-Nucleocapside IgG at T12. Remarkably, one third of T12 sera from anti-Nucleocapside IgG negative older individuals were unable to neutralize the BA.5 variant strain. Finally, the evaluation of T-cell mediated immunity showed that most analysed subjects, independently from age and comorbidity, displayed Spike-specific responses with a high degree of polyfunctionality, especially in the CD8 compartment. In conclusion, vaccinated subjects had high levels of circulating antibodies against SARS-CoV-2 Spike protein 12 months after the primary vaccination, which increased as compared to T6. The enhancing effect could be attributable to the administration of a third vaccine dose but also to the occurrence of breakthrough infection. Older individuals, especially those who were anti-Nucleocapside IgG negative, displayed an impaired capacity to neutralize the BA.5 variant strain. Spike specific T-cell responses, able to sustain immunity and maintain the ability to fight the infection, were present in most of older and younger subjects assayed at T1
- …
