44 research outputs found

    Regulation of the High Affinity IgE Receptor (FcεRI) in Human Neutrophils: Role of Seasonal Allergen Exposure and Th-2 Cytokines

    Get PDF
    The high affinity IgE receptor, FcεRI, plays a key role in the immunological pathways involved in allergic asthma. Previously we have demonstrated that human neutrophils isolated from allergic asthmatics express a functional FcεRI, and therefore it was of importance to examine the factors regulating its expression. In this study, we found that neutrophils from allergic asthmatics showed increased expression of FcεRI-α chain surface protein, total protein and mRNA compared with those from allergic non asthmatics and healthy donors (p<0.001). Interestingly, in neutrophils isolated from allergic asthmatics, FcεRI-α chain surface protein and mRNA expression were significantly greater during the pollen season than outside the pollen season (n = 9, P = 0.001), an effect which was not observed either in the allergic non asthmatic group or the healthy donors (p>0.05). Allergen exposure did not affect other surface markers of neutrophils such as CD16/FcγRIII or IL-17R. In contrast to stimulation with IgE, neutrophils incubated with TH2 cytokines IL-9, GM-CSF, and IL-4, showed enhanced FcεRI-α chain surface expression. In conclusion, these results suggest that enhanced FcεRI expression in human neutrophils from allergic asthmatics during the pollen season can make them more susceptible to the biological effects of IgE, providing a possible new mechanism by which neutrophils contribute to allergic asthma

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al

    Glucocorticoid and Estrogen Receptors Are Reduced in Mitochondria of Lung Epithelial Cells in Asthma

    Get PDF
    Mitochondrial glucocorticoid (mtGR) and estrogen (mtER) receptors participate in the coordination of the cell’s energy requirement and in the mitochondrial oxidative phosphorylation enzyme (OXPHOS) biosynthesis, affecting reactive oxygen species (ROS) generation and induction of apoptosis. Although activation of mtGR and mtER is known to trigger anti-inflammatory signals, little information exists on the presence of these receptors in lung tissue and their role in respiratory physiology and disease. Using a mouse model of allergic airway inflammation disease and applying confocal microscopy, subcellular fractionation, and Western blot analysis we showed mitochondrial localization of GRα and ERβ in lung tissue. Allergic airway inflammation caused reduction in mtGRα, mtERβ, and OXPHOS enzyme biosynthesis in lung cells mitochondria and particularly in bronchial epithelial cells mitochondria, which was accompanied by decrease in lung mitochondrial mass and induction of apoptosis. Confirmation and validation of the reduction of the mitochondrial receptors in lung epithelial cells in human asthma was achieved by analyzing autopsies from fatal asthma cases. The presence of the mitochondrial GRα and ERβ in lung tissue cells and especially their reduction in bronchial epithelial cells during allergic airway inflammation suggests a crucial role of these receptors in the regulation of mitochondrial function in asthma, implicating their involvement in the pathophysiology of the disease

    Genetics of asthma: a molecular biologist perspective

    Get PDF
    Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis

    Age-Related Adaptation of Bone-PDL-Tooth Complex: Rattus-Norvegicus as a Model System

    Get PDF
    Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7±0.1 to 0.9±0.2 GPa) and cementum (0.6±0.1 to 0.8±0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated

    Vaccination against hepatitis b virus: are Italian medical students sufficiently protected after the public vaccination programme?

    Full text link
    The development of a vaccine against hepatitis B virus (HBV) has been a major achievement in terms of prevention of HBV infection. For the present study, we analysed the long-term immunogenicity and effectiveness of HBV vaccination among healthcare students with different working seniorities.Background: The development of a vaccine against hepatitis B virus (HBV) has been a major achievement in terms of prevention of HBV infection. For the present study, we analysed the long-term immunogenicity and effectiveness of HBV vaccination among healthcare students with different working seniorities. Methods: A cross-sectional study of undergraduate and postgraduate students attending the Medical School of the Second University of Naples was conducted between September 2012 and December 2014. HBV serum markers were determined and multivariate logistic regression analysis was used to identify factors associated with the level of long-term immunogenicity. Results: Of the 2,932 subjects evaluated, only 33 (1.1 %) declared no history of vaccination. All vaccinated subjects were HBsAg/anti-HBc negative, 459 of which had an anti-HBs titre <10 IU/L. The latter were younger, more likely to be attending a healthcare profession school (i.e., dental hygienists, nursing, paediatric nursing, radiography and midwifery) than a medical school (at either undergraduate or postgraduate level) and more likely to have been vaccinated in infancy. Conclusion: The results of this study suggest that assessment of HBV serum markers in workers potentially exposed to hospital infections is useful to identify small numbers of unvaccinated subjects or vaccinated subjects with low antibody titre, all of whom should be referred to a booster series of vaccinations

    Basic Science Considerations in Primary Total Hip Replacement Arthroplasty

    Get PDF
    Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement

    Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic.

    No full text
    Periodontitis are bacterium-driven inflammatory diseases that destroy tooth-supporting tissues whose complete restoration is not currently possible. RGTA(R), a new class of agents, have this capacity in an animal model. Periodontitis was induced in hamsters and, starting 8 weeks later, injected RG1503, a glycosaminoglycan synthesized from a 40 kDa dextran behaving like a heparan sulfate mimetic (1.5 mg kg(-1) w(-1)) or saline for 8 weeks. The three periodontium compartments were evaluated by immunohistochemistry and morphometry. The gingival extracellular matrix disorganized by inflammation was restoring under treatment. The collagen network was repaired and resumed its previous organization. Fibrillin-1 expression was restored so that the elastic network rebuilt at a distance from the pocket and began to reconstruct near the pocket. Apoptotic cell numbers were decreased in the pocket epithelium, and more so in the infiltrated connective tissue. The continuity and the thickness of the basement membrane were restored and testified normalization of epithelium connective tissue interaction. The amount of alveolar bone increased around the first molar, and the interradicular bone was rebuilt. The root cementum was thickened and the number of proliferating cells in the periodontal ligament was increased close to the cementum. RG1503 treatment induces potent anabolic reactions in the extracellular matrices of the different tissues of the periodontium and recruitment of progenitors. In particular, the cell proliferation close to the root surface suggests the reformation of a functional attachment apparatus. These results demonstrate that RG1503 reverses the degenerative changes induced by inflammation and favors the conditions of a regenerative process. Thus, RGTA, a known matrix component mimetic and protector, may be considered as a new therapeutic tool to regenerate the tissues destroyed by periodontitis
    corecore