333 research outputs found

    Calsequestrins in skeletal and cardiac muscle from adult Danio rerio

    Get PDF
    Calsequestrin (Casq) is a high capacity, low affinity Ca2+-binding protein, critical for Ca2+-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located

    The down-regulation of pank2 gene in zebrafish as a model of Pantothenate Kinase Associated Neurodegeneration.

    Get PDF
    open9siThe increased iron deposition is a hallmark of many neurodegenerative diseases, but its pathogenic role is still unclear. A strong link between iron and neurodegeneration is evident in a set of heterogeneous neurological disorders, known as Neurodegeneration with Brain Iron Accumulation (NBIA). The most common form of inherited NBIA is associated with mutations in hPank2 gene (PKAN). Pank2 is the rate limiting enzyme in CoA biosynthesis and its downregulation in mammalian cells leads to perturbation of cellular iron homeostasis. Here we explore Pank2 biological function in Danio rerio, and propose this system as an important new tool for the study of PKAN disease.openZizioli, Daniela; Tiso, Natascia; Busolin, Giorgia; Khatri, Deepak; Giuliani, Roberta; Borsani, Giuseppe; Monti, Eugenio; Argenton, Francesco; Finazzi, DarioZizioli, Daniela; Tiso, Natascia; Busolin, Giorgia; Khatri, Deepak; Giuliani, Roberta; Borsani, Giuseppe; Monti, Eugenio; Argenton, Francesco; Finazzi, Dari

    Prep1.1 has essential genetic functions in hindbrain development and cranial neural crest cell differentiation

    Get PDF
    In this study we analysed the function of the Meinox gene prep1.1 during zebrafish development. Meinox proteins form heterotrimeric complexes with Hox and Pbx members, increasing the DNA binding specificity of Hox proteins in vitro and in vivo. However, a role for a specific Meinox protein in the regulation of Hox activity in vivo has not been demonstrated. In situ hybridization showed that prep1.1 is expressed maternally and ubiquitously up to 24 hours post-fertilization (hpf), and restricted to the head from 48 hpf onwards. Morpholino-induced prep1.1 loss-of-function caused significant apoptosis in the CNS. Hindbrain segmentation and patterning was affected severely, as revealed by either loss or defective expression of several hindbrain markers ( foxb1.2/mariposa , krox20 , pax2.1 and pax6.1 ), including anteriorly expressed Hox genes ( hoxb1a , hoxa2 and hoxb2 ), the impaired migration of facial nerve motor neurons, and the lack of reticulospinal neurons (RSNs) except Mauthner cells. Furthermore, the heads of prep1.1 morphants lacked all pharyngeal cartilages. This was not caused by the absence of neural crest cells or their impaired migration into the pharyngeal arches, as shown by expression of dlx2 and snail1 , but by the inability of these cells to differentiate into chondroblasts. Our results indicate that prep1.1 has a unique genetic function in craniofacial chondrogenesis and, acting as a member of Meinox-Pbc-Hox trimers, it plays an essential role in hindbrain development

    Isolation and Genetic Characterization of Mother-of-Snow-White, a Maternal Effect Allele Affecting Laterality and Lateralized Behaviors in Zebrafish

    Get PDF
    In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw), a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a “viewing test”. As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors

    Calsequestrins new calcium store markers of adult Zebrafish cerebellum and optic tectum

    Get PDF
    Calcium stores in neurons are heterogeneous in compartmentalization and molecular composition. Danio rerio (zebrafish) is an animal model with a simply folded cerebellum similar in cellular organization to that of mammals. The aim of the study was to identify new endoplasmic reticulum (ER) calcium store markers in zebrafish adult brain with emphasis on cerebellum and optic tectum. By quantitative polymerase chain reaction, we found three RNA transcripts coding for the intra-ER calcium binding protein calsequestrin: casq1a, casq1b, and casq2. In brain homogenates, two isoforms were detected by mass spectrometry and western blotting. Fractionation experiments of whole brain revealed that Casq1a and Casq2 were enriched in a heavy fraction containing ER microsomes and synaptic membranes. By in situ hybridization, we found the heterogeneous expression of casq1a and casq2 mRNA to be compatible with the cellular localization of calsequestrins investigated by immunofluorescence. Casq1 was expressed in neurogenic differentiation 1 expressing the granule cells of the cerebellum and the periventricular zone of the optic tectum. Casq2 was concentrated in parvalbumin expressing Purkinje cells. At a subcellular level, Casq1 was restricted to granular cell bodies, and Casq2 was localized in cell bodies, dendrites, and axons. Data are discussed in relation to the differential cellular and subcellular distribution of other cerebellum calcium store markers and are evaluated with respect to the putative relevance of calsequestrins in the neuron-specific functional activity

    Structure and functional analysis of a tilapia (Oreochromis mossambicus) growth hormone gene: activation and repression by pituitary transcription factor Pit-1

    Full text link
    A gene encoding the Tilapia mossambica (Oreochromis mossambicus) growth hormone (tiGH) was isolated and sequenced. The gene spans 5.6 kb, including 3.7 kb of 5' and 0.2 kb of 3' flanking sequences and a 1.7-kb transcription unit comprised of six exons and five introns. The gene and the 5' flanking region contain several potential binding sites for Pit-1, a key transcription activator of mammalian GH genes. One of these (-57/-42) is highly conserved in fish GH genes. It activates transcription in pituitary cells and binds Pit-1. Transfection of luciferase reporter plasmids containing either the -3602/+19 tiGH sequence or one of its 5' deletion mutants (-2863/, -1292/, and -463/+19) resulted in strong activity in Pit-1-producing rat pituitary GC cells. A dose-dependent activation of the tiGH promoter was achieved in nonpituitary fish EPC and monkey COS cells cotransfected with a rat Pit-1 expression vector, demonstrating the crucial role played by Pit-1 as an activator of the tiGH gene. Fusion of the tiGH promoter with the beta-galactosidase gene led to transient expression specifically in the nervous system of microinjected zebrafish embryos. The activity of the tiGH promoter in GC and EPC cells was strongly repressed by extending its 3' end from +19 to +40, a sequence in which a Pit-1-binding site was identified using gel retardation assays. Point mutations of the site that suppressed Pit-1 binding in vitro restored full tiGH promoter activity. Thus, a Pit-1-binding site located in the 5' untranslated region mediates Pit-1-dependent repression of the tiGH gene

    Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration

    Get PDF
    Type 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from \u3b2-cells are not yet fully understood. By taking advantage of a tcf7l2 zebrafish mutant line, we first show that these animals are characterized by hyperglycemia and impaired islet development. Moreover, we demonstrate that the zebrafish tcf7l2 gene is highly expressed in the exocrine pancreas, suggesting potential bystander effects on \u3b2-cell growth, differentiation and regeneration. Finally, we describe a peculiar vascular phenotype in tcf7l2 mutant larvae, characterized by significant reduction in the average number and diameter of pancreatic islet capillaries. Overall, the zebrafish Tcf7l2 mutant, characterized by hyperglycemia, pancreatic and vascular defects, and reduced regeneration proves to be a suitable model to study the mechanism of action and the pleiotropic effects of Tcf7l2, the most relevant T2D GWAS hit in human populations

    A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development

    Get PDF
    TGF-beta (TGFβ) family mediated Smad signaling is involved in mesoderm and endoderm specification, left-right asymmetry formation and neural tube development. The TGFβ1/2/3 and Activin/Nodal signal transduction cascades culminate with activation of SMAD2 and/or SMAD3 transcription factors and their overactivation are involved in different pathologies with an inflammatory and/or uncontrolled cell proliferation basis, such as cancer and fibrosis. We have developed a transgenic zebrafish reporter line responsive to Smad3 activity. Through chemical, genetic and molecular approaches we have seen that this transgenic line consistently reproduces in vivo Smad3-mediated TGFβ signaling. Reporter fluorescence is activated in phospho-Smad3 positive cells and is responsive to both Smad3 isoforms, Smad3a and 3b. Moreover, Alk4 and Alk5 inhibitors strongly repress the reporter activity. In the CNS, Smad3 reporter activity is particularly high in the subpallium, tegumentum, cerebellar plate, medulla oblongata and the retina proliferative zone. In the spinal cord, the reporter is activated at the ventricular zone, where neuronal progenitor cells are located. Colocalization methods show in vivo that TGFβ signaling is particularly active in neuroD+ precursors. Using neuronal transgenic lines, we observed that TGFβ chemical inhibition leads to a decrease of differentiating cells and an increase of proliferation. Similarly, smad3a and 3b knock-down alter neural differentiation showing that both paralogues play a positive role in neural differentiation. EdU proliferation assay and pH3 staining confirmed that Smad3 is mainly active in post-mitotic, non-proliferating cells. In summary, we demonstrate that the Smad3 reporter line allows us to follow in vivo Smad3 transcriptional activity and that Smad3, by controlling neural differentiation, promotes the progenitor to precursor switch allowing neural progenitors to exit cell cycle and differentiate

    Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development

    Get PDF
    As effectors of the Hippo signaling cascade, YAP1 and TAZ are transcriptional regulators playing important roles in development, tissue homeostasis and cancer. A number of different cues, including mechanotransduction of extracellular stimuli, adhesion molecules, oncogenic signaling and metabolism modulate YAP1/TAZ nucleo-cytoplasmic shuttling. In the nucleus, YAP1/TAZ tether with the DNA binding proteins TEADs, to activate the expression of target genes that regulate proliferation, migration, cell plasticity, and cell fate. Based on responsive elements present in the human and zebrafish promoters of the YAP1/TAZ target gene CTGF, we established zebrafish fluorescent transgenic reporter lines of Yap1/Taz activity. These reporter lines provide an in vivo view of Yap1/Taz activity during development and adulthood at the whole organism level. Transgene expression was detected in many larval tissues including the otic vesicles, heart, pharyngeal arches, muscles and brain and is prominent in endothelial cells. Analysis of vascular development in yap1/taz zebrafish mutants revealed specific defects in posterior cardinal vein (PCV) formation, with altered expression of arterial/venous markers. The overactivation of Yap1/Taz in endothelial cells was sufficient to promote an aberrant vessel sprouting phenotype. Our findings confirm and extend the emerging role of Yap1/Taz in vascular development including angiogenesis

    Zebrafish models for ARVC8 analysis and drug discovery

    Get PDF
    INTRODUCTION: Desmoplakin is one the most abundant desmosomal proteins in cardiac and epithelial tissues. In humans, dominat mutations in the desmoplakin gene (DSP) cause Arrhythmogenic Right Ventricular Cardio​myopathy 8 (ARVC8), a dominant cardiomyopathy, frequently involved in juvenile sudden death. Current ARVC models are based on cell lines and transgenic mice. In this context, it has been shown that suppression of DSP expression leads to a reduction in canonical Wnt signaling, suggesting that this pathway could be a molecular target for ARVC therapeutic intervention. In order to address this issue, the present study aims to evaluate the pathogenic mechanisms of DSP mutations in vivo, using zebrafish (Danio rerio) as an innovative model for this disease. In zebrafish, the desmoplakin gene is present with two isoforms, dspa and dspb, both orthologous to the single DSP in humans. PURPOSE: The purpose of this study is the generation and the phenotypic characterization of transient ARVC8 zebrafish models using a morpholino-mediated knock-down strategy. In addition, by taking advantage of zebrafish pathway reporter lines, we aim to verify if Wnt signaling and/or other molecular cascades might be involved in ARVC8 pathogenesis. The final goal is the assessment of our ARVC8 model as a suitable tool for molecularly-targeted drug discovery. METHODS: To evaluate the expression of dspa and dspb during zebrafish embryonic development and adulthood, we used whole-mount in situ hybridization (WISH) and semi quantitative RT_PCR. Knockdown of zebrafish dspa and dspb genes was obtained by a morpholino (MO)-based antisense strategy. Specifically, we injected anti-dspa and anti-dspb MO oligos in both wild types and pathway-specific lines reporting the activity of Wnt, Bmp, TGFbeta, FGF, Shh, Notch, CREB, Hippo and Hypoxia signaling. RESULTS: We found that both dspa and dspb are expressed during zebrafish embryonic development, while the molecular analysis of cDNAs from different adult tissues demonstrates that both dspa and dspb are highly expressed in heart and skin, with dspa more strongly detectable compared to dspb. MO-mediated knock-down of both dspa and dspb leads to delayed development, microcephaly, pericardial edema and, particularly in dspb knock-down embryos, decreased heart rate. TEM analysis of cardiac and skin tissues under dspa+dspb simultaneous knock-down shows reduced and disorganized desmososmes. As far as concerns the analysis of previously mentioned signaling pathways, we observed a specific reduction of Wnt signaling responsiveness in the cardiac region of both dspa and dspb knock- down embryos (Fig. 1). CONCLUSION: Our results show that transient knock-down of zebrafish desmoplakin genes is able to phenocopy some ARVC8 features, such as cardiac and cutaneous desmosomal defects, heart rate alteration and Wnt signaling reduction, pointing to zebrafish as a suitable ARVC8 model for in vivo screening of molecularly-targeted drugs
    corecore