57 research outputs found

    Transfusion of fresh frozen plasma in non-bleeding ICU patients -TOPIC TRIAL: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fresh frozen plasma (FFP) is an effective therapy to correct for a deficiency of multiple coagulation factors during bleeding. In past years, use of FFP has increased, in particular in patients on the Intensive Care Unit (ICU), and has expanded to include prophylactic use in patients with a coagulopathy prior to undergoing an invasive procedure. Retrospective studies suggest that prophylactic use of FFP does not prevent bleeding, but carries the risk of transfusion-related morbidity. However, up to 50% of FFP is administered to non-bleeding ICU patients. With the aim to investigate whether prophylactic FFP transfusions to critically ill patients can be safely omitted, a multi-center randomized clinical trial is conducted in ICU patients with a coagulopathy undergoing an invasive procedure.</p> <p>Methods</p> <p>A non-inferiority, prospective, multicenter randomized open-label, blinded end point evaluation (PROBE) trial. In the intervention group, a prophylactic transfusion of FFP prior to an invasive procedure is omitted compared to transfusion of a fixed dose of 12 ml/kg in the control group. Primary outcome measure is relevant bleeding. Secondary outcome measures are minor bleeding, correction of International Normalized Ratio, onset of acute lung injury, length of ventilation days and length of Intensive Care Unit stay.</p> <p>Discussion</p> <p>The Transfusion of Fresh Frozen Plasma in non-bleeding ICU patients (TOPIC) trial is the first multi-center randomized controlled trial powered to investigate whether it is safe to withhold FFP transfusion to coagulopathic critically ill patients undergoing an invasive procedure.</p> <p>Trial Registration</p> <p>Trial registration: Dutch Trial Register NTR2262 and ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01143909">NCT01143909</a></p

    Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    Get PDF
    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage

    Effects of Blood Products on Inflammatory Response in Endothelial Cells In Vitro

    Get PDF
    BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells

    Year in review in Intensive Care Medicine 2010: I. Acute renal failure, outcome, risk assessment and ICU performance, sepsis, neuro intensive care and experimentals

    Get PDF
    SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore