2,922 research outputs found

    An efficient graph representation for arithmetic circuit verification

    Full text link

    Fretting of CoCrMo and Ti6Al4V Alloys in Modular Prostheses

    Get PDF
    Implantation of a total hip replacements (THR) is an effective intervention in the management of arthritis. Modularity at the taper junction of THR was introduced in order to improve the ease with which the surgeon could modify the length of the taper section and the overall length of the replacement. Cobalt chromium (Co–28Cr–6Mo) and titanium (Ti–6Al–4V) alloys are the most commonly used materials for the device. This study investigates the fretting behaviour of both CoCr–CoCr and CoCr–Ti couplings and analyses their damage mechanisms. A reciprocating tribometer ball on plate fretting contact was instrumented with in situ electrochemistry to characterise the damage inflicted by tribocorrosion on the two couplings. Fretting displacements amplitudes of 10, 25 and 50 mm at an initial contact pressure of 1 GPa were assessed. The results reveal larger metallic volume loss from the CoCr–CoCr alloy compared to the CoCr–Ti alloy, and the open circuit potential indicates a depassivation of the protective oxide layer at displacement amplitudes .25 mm. In conclusion, the damage mechanisms of CoCr–CoCr and CoCr–Ti fretting contacts were identified to be wear and fatigue dominated mechanisms respectively

    Speculation

    Get PDF
    ‘Speculation’ originally meant ‘reflective observation’. It came to mean ‘conjecture’ or ‘mere conjecture’ as philosophers strove for certainty, consecrating science as rigorously acquired knowledge accumulated through application of the scientific method and devalued the cognitive status of other discourses. The present conventional meaning of speculation, where the place of observation has disappeared, is a by-product of this consecration. In this entry I show how through efforts to defend the status of these other discourses, the original meaning of ‘speculation’ was not only revived but built upon by speculative philosophers. They showed that speculation is primordial to all experience and thinking, with past speculations embodied in language as ‘dead’ metaphors. Revealing the possibility of elaborating alternative metaphors frees us not only from these dead metaphors to overcome the dead-ends of current science, opening up new possibilities for enquiry, but the possibility of reconceiving ourselves and our place in nature. In this way, speculation makes it possible to transform ourselves, creating radically new ways of living and new forms of life. On this view, speculation, by opening new possibilities, could free us from the destructive trajectories of current civilization

    Increasing peptide identifications and decreasing search times for ETD spectra by pre-processing and calculation of parent precursor charge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electron Transfer Dissociation [ETD] can dissociate multiply charged precursor polypeptides, providing extensive peptide backbone cleavage. ETD spectra contain charge reduced precursor peaks, usually of high intensity, and whose pattern is dependent on its parent precursor charge. These charge reduced precursor peaks and associated neutral loss peaks should be removed before these spectra are searched for peptide identifications. ETD spectra can also contain ion-types other than c and z<b>Ë™</b>. Modifying search strategies to accommodate these ion-types may aid in increased peptide identifications. Additionally, if the precursor mass is measured using a lower resolution instrument such as a linear ion trap, the charge of the precursor is often not known, reducing sensitivity and increasing search times. We implemented algorithms to remove these precursor peaks, accommodate new ion-types in noise filtering routine in OMSSA and to estimate any unknown precursor charge, using Linear Discriminant Analysis [LDA].</p> <p>Results</p> <p>Spectral pre-processing to remove precursor peaks and their associated neutral losses prior to protein sequence library searches resulted in a 9.8% increase in peptide identifications at a 1% False Discovery Rate [FDR] compared to previous OMSSA filter. Modifications to the OMSSA noise filter to accommodate various ion-types resulted in a further 4.2% increase in peptide identifications at 1% FDR. Moreover, ETD spectra when searched with charge states obtained from the precursor charge determination algorithm is shown to be up to 3.5 times faster than the general range search method, with a minor 3.8% increase in sensitivity.</p> <p>Conclusion</p> <p>Overall, there is an 18.8% increase in peptide identifications at 1% FDR by incorporating the new precursor filter, noise filter and by using the charge determination algorithm, when compared to previous versions of OMSSA.</p

    Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus

    Get PDF
    Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to rubins , bleaching , photoisomerization , or perturbation with bulky substituents. Pigments containing modified chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the (aß)-protomers of these pigments to higher aggregates. The results demonstrate a pronounced effect of the state of the chromophores on biliprotein quaternary structure. It may be important in phycobi1isome assembly , and also in the dual function of biliproteins as (i) antenna pigments for photosynthesis and (ii) reaction centers for photomor-phogenesis

    MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units

    Get PDF
    AIM: MR-based correction for photon attenuation in PET/MRI remains challenging, particularly for neurological applications requiring quantitation of data. Existing methods are either not sufficiently accurate or are limited by the computation time required. The goal of this study was to develop an MR-based attenuation correction method that accurately separates bone tissue from air and provides continuous-valued attenuation coefficients for bone. MATERIALS AND METHODS: PET/MRI and CT datasets were obtained from 98 subjects (mean age [±SD]: 66yrs [±9.8], 57 females) using an IRB-approved protocol and with informed consent. Subjects were injected with 352±29MBq of (18)F-Florbetapir tracer, and PET acquisitions were begun either immediately or 50min after injection. CT images of the head were acquired separately using a PET/CT system. Dual echo ultrashort echo-time (UTE) images and two-point Dixon images were acquired. Regions of air were segmented via a threshold of the voxel-wise multiplicative inverse of the UTE echo 1 image. Regions of bone were segmented via a threshold of the R2* image computed from the UTE echo 1 and UTE echo 2 images. Regions of fat and soft tissue were segmented using fat and water images decomposed from the Dixon images. Air, fat, and soft tissue were assigned linear attenuation coefficients (LACs) of 0, 0.092, and 0.1cm(-1), respectively. LACs for bone were derived from a regression analysis between corresponding R2* and CT values. PET images were reconstructed using the gold standard CT method and the proposed CAR-RiDR method. RESULTS: The RiDR segmentation method produces mean Dice coefficient±SD across subjects of 0.75±0.05 for bone and 0.60±0.08 for air. The CAR model for bone LACs greatly improves accuracy in estimating CT values (28.2%±3.0 mean error) compared to the use of a constant CT value (46.9%±5.8, p<10(-6)). Finally, the CAR-RiDR method provides a low whole-brain mean absolute percent-error (MAPE±SD) in PET reconstructions across subjects of 2.55%±0.86. Regional PET errors were also low and ranged from 0.88% to 3.79% in 24 brain ROIs. CONCLUSION: We propose an MR-based attenuation correction method (CAR-RiDR) for quantitative PET neurological imaging. The proposed method employs UTE and Dixon images and consists of two novel components: 1) accurate segmentation of air and bone using the inverse of the UTE1 image and the R2* image, respectively and 2) estimation of continuous LAC values for bone using a regression between R2* and CT-Hounsfield units. From our analysis, we conclude that the proposed method closely approaches (<3% error) the gold standard CT-scaled method in PET reconstruction accuracy
    • …
    corecore