28 research outputs found
Dynamic screening of a localized hole during photoemission from a metal cluster
Recent advances in attosecond spectroscopy techniques have fueled the
interest in the theoretical description of electronic processes taking place in
the subfemtosecond time scale. Here we study the coupled dynamic screening of a
localized hole and a photoelectron emitted from a metal cluster using a
semi-classical model. Electron density dynamics in the cluster is calculated
with Time-Dependent Density Functional Theory and the motion of the
photoemitted electron is described classically. We show that the dynamic
screening of the hole by the cluster electrons affects the motion of the
photoemitted electron. At the very beginning of its trajectory, the
photoemitted electron interacts with the cluster electrons that pile up to
screen the hole. Within our model, this gives rise to a significant reduction
of the energy lost by the photoelectron. Thus, this is a velocity dependent
effect that should be accounted for when calculating the average losses
suffered by photoemitted electrons in metals.Comment: 15 pages, 5 figure
A biominősítés hatása a fogyasztók érzékelésére és attitűdjére csokoládék esetén
The time–energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modu- lations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science
Solution of the Holstein equation of radiation trapping by the geometrical quantization technique. III. Partial frequency redistribution with Doppler broadening
We introduce an analytical method to investigate radiation trapping problems with Doppler frequency redistribution. The problem is formulated within the framework of the Holstein-Biberman-Payne equation. We interpret the basic integro-differential trapping equation as a generalized wave equation for a four-dimensional (4D) classical system (an associated quasiparticle). We then construct its analytical solution by a semiclassical approach, called the geometrical quantization technique (GQT). Within the GQT, it is shown that the spatial and frequency variables can be separated and that the frequency part of the excited atom distribution function obeys a stationary Schrodinger equation for a perturbed oscillator. We demonstrate that there is a noticeable deviation of the actual spectral emission profile from the Doppler line in the region of small opacities. The problem of calculating the spatial mode structure and the effective radiation trapping factors is reduced to the evaluation of wave functions and quantized energy values of the quasiparticle confined in the vapor cell. We formulate the quantization rules and derive the phase factors, which allow us to obtain analytically the complete spectrum of the trapping factors in 1D geometries (layer, cylinder, sphere) and other (2D and 3D) geometries when the separation of space variables is possible. Finally, we outline a possible extension of our method to treat radiation trapping effects for more general experimental situations including, for instance, a system of cold atoms
Direct numerical method to solve radiation trapping problems with a Doppler broadening mechanism for partial frequency redistribution
We present a numerical method for solving the Holstein-Biberman-Payne equation with Doppler frequency redistribution. The method is based on direct time propagation of the initial distribution of excited atoms, employing the split-propagation technique. It allows a precise study of various aspects of radiation transfer phenomena occurring in an arbitrary convex three-dimensional spatial region, driven by external conditions with arbitrary time dependencies. We present some results obtained for slab and spherically shaped geometries and compare them to results from other evaluation methods. The efficiency of the method is demonstrated by determining the intensity of radiation escaping the gas cell in afterglow experiments