1,048 research outputs found

    Alice Springs water efficiency study

    Full text link

    Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering

    Get PDF
    The influence of the stoichiometry of amorphous zinc tin oxide (a-ZTO) thin films used as the semiconducting channel in thin film transistors (TFTs) is investigated. A-ZTO has been deposited using remote-plasma reactive sputtering from zinc:tin metal alloy targets with 10%, 33%, and 50% Sn at. %. Optimisations of thin films are performed by varying the oxygen flow, which is used as the reactive gas. The structural, optical, and electrical properties are investigated for the optimised films, which, after a post-deposition annealing at 500 °C in air, are also incorporated as the channel layer in TFTs. The optical band gap of a-ZTO films slightly increases from 3.5 to 3.8 eV with increasing tin content, with an average transmission ∌90% in the visible range. The surface roughness and crystallographic properties of the films are very similar before and after annealing. An a-ZTO TFT produced from the 10% Sn target shows a threshold voltage of 8 V, a switching ratio of 108^8, a sub-threshold slope of 0.55 V dec−1^{-1}, and a field effect mobility of 15 cm2^2 V−1^{-1} s−1^{-1}, which is a sharp increase from 0.8 cm2^2 V−1^{-1} s−1^{-1} obtained in a reference ZnO TFT. For TFTs produced from the 33% Sn target, the mobility is further increased to 21 cm2^2 V−1^{-1} s−1^{-1}, but the sub-threshold slope is slightly deteriorated to 0.65 V dec−1^{-1}. For TFTs produced from the 50% Sn target, the devices can no longer be switched off (i.e., there is no channel depletion). The effect of tin content on the TFT electrical performance is explained in the light of preferential sputtering encountered in reactive sputtering, which resulted in films sputtered from 10% and 33% Sn to be stoichiometrically close to the common Zn2_2SnO4_4 and ZnSnO3_3 phases.Engineering and Physical Sciences Research Council (Grant ID: EP/M013650/1

    Spectral Pitch Similarity is a Predictor of Perceived Change in Sound- as Well as Note-Based Music

    Get PDF
    Spectral pitch similarity (SPS) is a measure of the similarity between spectra of any pair of sounds. It has proved powerful in predicting perceived stability and fit of notes and chords in various tonal and microtonal instrumental contexts, that is, with discrete tones whose spectra are harmonic or close to harmonic. Here we assess the possible contribution of SPS to listeners’ continuous perceptions of change in music with fewer discrete events and with noisy or profoundly inharmonic sounds, such as electroacoustic music. Previous studies have shown that time series of perception of change in a range of music can be reasonably represented by time series models, whose predictors comprise autoregression together with series representing acoustic intensity and, usually, the timbral parameter spectral flatness. Here, we study possible roles for SPS in such models of continuous perceptions of change in a range of both instrumental (note-based) and sound-based music (generally containing more noise and fewer discrete events). In the first analysis, perceived change in three pieces of electroacoustic and one of piano music is modeled, to assess the possible contribution of (de-noised) SPS in cooperation with acoustic intensity and spectral flatness series. In the second analysis, a broad range of nine pieces is studied in relation to the wider range of distinctive spectral predictors useful in previous perceptual work, together with intensity and SPS. The second analysis uses cross-sectional (mixed-effects) time series analysis to take advantage of all the individual response series in the dataset, and to assess the possible generality of a predictive role for SPS. SPS proves to be a useful feature, making a predictive contribution distinct from other spectral parameters. Because SPS is a psychoacoustic “bottom up” feature, it may have wide applicability across both the familiar and the unfamiliar in the music to which we are exposed

    Canonical Generations and the British Left: The Narrative Construction of the Miners’ Strike 1984–85

    Get PDF
    ‘Generations’ have been invoked to describe a variety of social and cultural relationships, and to understand the development of self-conscious group identity. Equally, the term can be an applied label and politically useful construct; generations can be retrospectively produced. Drawing on the concept of ‘canonical generations’ – those whose experiences come to epitomise an event of historic and symbolic importance – this article examines the narrative creation and functions of ‘generations’ as collective memory shapes and re-shapes the desire for social change. Building a case study of the canonical role of the miners’ strike of 1984–85 in the narrative history of the British left, it examines the selective appropriation and transmission of the past in the development of political consciousness. It foregrounds the autobiographical narratives of activists who, in examining and legitimising their own actions and prospects, (re)produce a ‘generation’ in order to create a relatable and useful historical understanding

    Fourier phase and pitch-class sum

    Full text link
    Music theorists have proposed two very different geometric models of musical objects, one based on voice leading and the other based on the Fourier transform. On the surface these models are completely different, but they converge in special cases, including many geometries that are of particular analytical interest.Accepted manuscrip

    Label-free detection of human prostate-specific antigen (hPSA) using film bulk acoustic resonators (FBARs)

    Get PDF
    Label-free detection of cancer biomarkers using low cost biosensors has promising applications in clinical diagnostics. In this work, ZnO-based thin film bulk acoustic wave resonators (FBARs) with resonant frequency of ∌1.5 GHz and mass sensitivity of 0.015 mg/m2 (1.5 ng/cm2) have been fabricated for their deployment as biosensors. Mouse monoclonal antibody, anti-human prostate-specific antigen (Anti-hPSA) has been used to bind human prostate-specific antigen (hPSA), a model cancer used in this study. Ellipsometry was used to characterize and optimise the antibody adsorption and antigen binding on gold surface. It was found that the best amount of antibody at the gold surface for effective antigen binding is around 1 mg/m2, above or below which resulted in the reduced antigen binding due to either the limited binding sites (below 1 mg/m2) or increased steric effect (above 1 mg/m2). The FBAR data were in good agreement with the data obtained from ellipsometry. Antigen binding experiments using FBAR sensors demonstrated that FBARs have the capability to precisely detect antigen binding, thereby making FBARs an attractive low cost alternative to existing cancer diagnostic sensors.This work was supported by the Engineering and Physical Sciences Research Council [grants EP/F062966/1, EP/F063865/1 and EP/F06294X/1], the Royal Society [grant RG120061] and the National Natural Science Foundation of China (NSFC) [grant 61150110485].This is the accepted manuscript version. The final published version of the article is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0925400513011052

    Lentiviral Vector Production Titer Is Not Limited in HEK293T by Induced Intracellular Innate Immunity

    Get PDF
    Most gene therapy lentiviral vector (LV) production platforms employ HEK293T cells expressing the oncogenic SV40 large T-antigen (TAg) that is thought to promote plasmid-mediated gene expression. Studies on other viral oncogenes suggest that TAg may also inhibit the intracellular autonomous innate immune system that triggers defensive antiviral responses upon detection of viral components by cytosolic sensors. Here we show that an innate response can be generated after HIV-1-derived LV transfection in HEK293T cells, particularly by the transgene, yet, remarkably, this had no effect on LV titer. Further, overexpression of DNA sensing pathway components led to expression of inflammatory cytokine and interferon (IFN) stimulated genes but did not result in detectable IFN or CXCL10 and had no impact on LV titer. Exogenous IFN-ÎČ also did not affect LV production or transduction efficiency in primary T cells. Additionally, manipulation of TAg did not affect innate antiviral responses, but stable expression of TAg boosted vector production in HEK293 cells. Our findings demonstrate a measure of innate immune competence in HEK293T cells but, crucially, show that activation of inflammatory signaling is uncoupled from cytokine secretion in these cells. This provides new mechanistic insight into the unique suitability of HEK293T cells for LV manufacture

    Solidly Mounted Resonators with Carbon Nanotube Electrodes for Biosensing Applications

    Get PDF
    The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile

    Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases

    Get PDF
    A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease
    • 

    corecore