8,643 research outputs found

    Bridging Epidemiological Data with Features of the Urban Context: An experience of Urban Public Health within the City of Milan, Italy.

    Get PDF
    Referring to the Research Project ‘‘Enhancing Healthcare and Well-Being Through the Potential of Big Data: An Integration of Survey, Administrative, and Open Data to Assess Health Risk in the City of Milan with Data Science’’ the Authors present preliminary results regarding a survey distributed to a sample of citizens across all neighborhoods of Milano city. This survey sought to collect data regarding health risk factors of this population, including both individual (e.g. socio- demographic characteristics, behaviors, etc.) and community (e.g. environmental/morphological features, available social services, etc.) data. A digital survey was designed to collect information on the health conditions, risk factors, and lifestyle characteristics of a representative sample of the Milanese population at the neighborhood level, with reference to the census tracts and Local Identity Units (NIL). Collected survey data are entered into a system containing corresponding individual health information acquired from the Local Health Authority databases, creating a synthesized information profile with each respondent’s state of health, including existing conditions, health services used, and drug therapies. The disseminated survey was developed from comparisons with similar experiences at the national/international level and divided into 60 multiple choice questions (6 for Sociodemographic profile; 8 for Context of residence; 12 for Functional limitations; 25 for Behaviors and lifestyles; 9 for Access to health services). The data from urban analysis conducted on the NIL of the City of Milan are assessed with particular reference to the theme of bicycle-pedestrian accessibility (Walkability) in the urban context and repercus- sions on the adoption of Healthy Lifestyles. The models developed through this research are expected to provide critical insight for designing health promotion, health protec- tion, and disease prevention interventions aimed both at individual and community level

    The discovery of a novel antibiotic for the treatment of Clostridium difficile infections: a story of an effective academic-industrial partnership

    Get PDF
    Academic drug discovery is playing an increasingly important role in the identification of new therapies for a wide range of diseases. There is no one model that guarantees success. We describe here a drug discovery story where chance, the ability to capitalise on chance, and the assembling of a range of expertise, have all played important roles in the discovery and subsequent development of an antibiotic chemotype based on the bis-benzimidazole scaffold, with potency against a number of current therapeutically challenging diseases. One compound in this class, SMT19969, has recently entered Phase 2 human clinical trials for the treatment of Clostridium difficile infections

    Risk of seizure recurrence in people with single seizures and early epilepsy - Model development and external validation

    Get PDF
    PURPOSE: Following a single seizure, or recent epilepsy diagnosis, it is difficult to balance risk of medication side effects with the potential to prevent seizure recurrence. A prediction model was developed and validated enabling risk stratification which in turn informs treatment decisions and individualises counselling. METHODS: Data from a randomised controlled trial was used to develop a prediction model for risk of seizure recurrence following a first seizure or diagnosis of epilepsy. Time-to-event data was modelled via Cox's proportional hazards regression. Model validity was assessed via discrimination and calibration using the original dataset and also using three external datasets - National General Practice Survey of Epilepsy (NGPSE), Western Australian first seizure database (WA) and FIRST (Italian dataset of people with first tonic-clonic seizures). RESULTS: People with neurological deficit, focal seizures, abnormal EEG, not indicated for CT/MRI scan, or not immediately treated have a significantly higher risk of seizure recurrence. Discrimination was fair and consistent across the datasets (c-statistics: 0.555 (NGPSE); 0.558 (WA); 0.597 (FIRST)). Calibration plots showed good agreement between observed and predicted probabilities in NGPSE at one and three years. Plots for WA and FIRST showed poorer agreement with the model underpredicting risk in WA, and over-predicting in FIRST. This was resolved following model recalibration. CONCLUSION: The model performs well in independent data especially when recalibrated. It should now be used in clinical practice as it can improve the lives of people with single seizures and early epilepsy by enabling targeted treatment choices and more informed patient counselling

    Extubation and Weaning: Implementing a Standard Weaning Protocol

    Get PDF
    Purpose The purpose of this project is to determine if implementation of a standardized weaning protocol on mechanically ventilated patients affects reintubation rates and decreases adverse outcomes

    The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes

    Get PDF
    Background: The most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10–15%, and neurological sequelae in 30– 50% of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. Methods: Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. Results: The E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. Conclusions: Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion

    Characterisation of silent and active genes for a variable large protein of Borrelia recurrentis

    Get PDF
    BACKGROUND: We report the characterisation of the variable large protein (vlp) gene expressed by clinical isolate A1 of Borrelia recurrentis; the agent of the life-threatening disease louse-borne relapsing fever. METHODS: The major vlp protein of this isolate was characterised and a DNA probe created. Use of this together with standard molecular methods was used to determine the location of the vlp1(B. recurrentis A1) gene in both this and other isolates. RESULTS: This isolate was found to carry silent and expressed copies of the vlp1(B. recurrentis A1) gene on plasmids of 54 kbp and 24 kbp respectively, whereas a different isolate, A17, had only the silent vlp1(B. recurrentis A17) on a 54 kbp plasmid. Silent and expressed vlp1 have identical mature protein coding regions but have different 5' regions, both containing different potential lipoprotein leader sequences. Only one form of vlp1 is transcribed in the A1 isolate of B. recurrentis, yet both 5' upstream sequences of this vlp1 gene possess features of bacterial promoters. CONCLUSION: Taken together these results suggest that antigenic variation in B. recurrentis may result from recombination of variable large and small protein genes at the junction between lipoprotein leader sequence and mature protein coding region. However, this hypothetical model needs to be validated by further identification of expressed and silent variant protein genes in other B. recurrentis isolates

    Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle

    Get PDF
    Optical nanoantennas are a novel tool to investigate previously unattainable dimensions in the nanocosmos. Just like their radio-frequency equivalents, nanoantennas enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy of single nanoobjects is very demanding. Here, we present for the first time antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we utilize the antenna to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by mechanical breathing oscillations. We increase the signal amplitude by an order of magnitude which is in good agreement with our analytical and numerical models. Our method will find applications in linear and nonlinear spectroscopy of nanoobjects, ranging from single protein binding events via nonlinear tensor elements to the limits of continuum mechanics

    Stability Analysis of Frame Slotted Aloha Protocol

    Full text link
    Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency Identification (RFID) systems as the de facto standard in tag identification. However, very limited work has been done on the stability of FSA despite its fundamental importance both on the theoretical characterisation of FSA performance and its effective operation in practical systems. In order to bridge this gap, we devote this paper to investigating the stability properties of FSA by focusing on two physical layer models of practical importance, the models with single packet reception and multipacket reception capabilities. Technically, we model the FSA system backlog as a Markov chain with its states being backlog size at the beginning of each frame. The objective is to analyze the ergodicity of the Markov chain and demonstrate its properties in different regions, particularly the instability region. By employing drift analysis, we obtain the closed-form conditions for the stability of FSA and show that the stability region is maximised when the frame length equals the backlog size in the single packet reception model and when the ratio of the backlog size to frame length equals in order of magnitude the maximum multipacket reception capacity in the multipacket reception model. Furthermore, to characterise system behavior in the instability region, we mathematically demonstrate the existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor

    Extensive dissolution of live pteropods in the Southern Ocean

    Get PDF
    The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94– 1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand
    • …
    corecore