1,038 research outputs found
Order parameter model for unstable multilane traffic flow
We discuss a phenomenological approach to the description of unstable vehicle
motion on multilane highways that explains in a simple way the observed
sequence of the phase transitions "free flow -> synchronized motion -> jam" as
well as the hysteresis in the transition "free flow synchronized motion".
We introduce a new variable called order parameter that accounts for possible
correlations in the vehicle motion at different lanes. So, it is principally
due to the "many-body" effects in the car interaction, which enables us to
regard it as an additional independent state variable of traffic flow. Basing
on the latest experimental data (cond-mat/9905216) we assume that these
correlations are due to a small group of "fast" drivers. Taking into account
the general properties of the driver behavior we write the governing equation
for the order parameter. In this context we analyze the instability of
homogeneous traffic flow manifesting itself in both of the mentioned above
phase transitions where, in addition, the transition "synchronized motion ->
jam" also exhibits a similar hysteresis. Besides, the jam is characterized by
the vehicle flows at different lanes being independent of one another. We
specify a certain simplified model in order to study the general features of
the car cluster self-formation under the phase transition "free flow
synchronized motion". In particular, we show that the main local parameters of
the developed cluster are determined by the state characteristics of vehicle
motion only.Comment: REVTeX 3.1, 10 pages with 10 PostScript figure
Assessing water footprint at river basin level: a case study for the Heihe River Basin in Northwest China
Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB), a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr−1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production). The remaining 4% was for the industrial and domestic sectors. The "blue" (surface- and groundwater) component of WF was 811 million m3 yr−1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than "green" (soil water) WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid region
Tiny but mighty : bacterial membrane vesicles in food biotechnological applications
Membrane vesicle (MV) production is observed in all domains of life. Evidence of MV production accumulated in recent years among bacterial species involved in fermentation processes. These studies revealed MV composition, biological functions and properties, which made us recognize the potential of MVs in food applications as delivery vehicles of various compounds to other bacteria or the human host. Moreover, MV producing strains can deliver benefits as probiotics or starters in fermentation processes. Next to the natural production of MVs, we also highlight possible methods for artificial generation of bacterial MVs and cargo loading to enhance their applicability. We believe that a more in-depth understanding of bacterial MVs opens new avenues for their exploitation in biotechnological applications.</p
Effects of quantum space time foam in the neutrino sector
We discuss violations of CPT and quantum mechanics due to interactions of
neutrinos with space-time quantum foam. Neutrinoless double beta decay and
oscillations of neutrinos from astrophysical sources (supernovae, active
galactic nuclei) are analysed. It is found that the propagation distance is the
crucial quantity entering any bounds on EHNS parameters. Thus, while the bounds
from neutrinoless double beta decay are not significant, the data of the
supernova 1987a imply a bound being several orders of magnitude more stringent
than the ones known from the literature. Even more stringent limits may be
obtained from the investigation of neutrino oscillations from active galactic
nuclei sources, which have an impressive potential for the search of quantum
foam interactions in the neutrino sector.Comment: 5 page
Socio-economic conditions and small business vulnerability to climate change impacts in Hong Kong
Small and micro businesses bear the brunt of climate change impacts in the climate-challenged economy. Vulnerability is embedded into the socio-economic trajectories of their primary decision-makers. Multiple vulnerabilities may arise if the decision-makers’ socio-economic conditions are associated with climate-sensitive business characteristics. Previous research has provided little evidence on such linkages, thus losing insights into how different facets of vulnerability interact and evolve over time. This paper explores the interactions between elements of small business vulnerability and the socio-economic characteristics of their primary decision-makers. It draws on the results of a survey involving 116 owner-managers of small and micro businesses and in-depth interviews with a sub-sample. Study areas are three remote coastal communities in Hong Kong exposed to high floods. Results show that such interactions exist in multiple, non-linear ways. Socio-economic disadvantages (i.e. low education attainment, old age, low income, and female) are related to some aspects of small business vulnerability, while playing a role in mitigating or avoiding other aspects of it. The findings call for building frameworks that account for the multiple spheres in which vulnerabilities are engendered and their interactions, while allowing for complexities and feedback mechanisms
Comparison of structural transformations and superconductivity in compressed Sulfur and Selenium
Density-functional calculations are presented for high-pressure structural
phases of S and Se. The structural phase diagrams, phonon spectra,
electron-phonon coupling, and superconducting properties of the isovalent
elements are compared. We find that with increasing pressure, Se adopts a
sequence of ever more closely packed structures (beta-Po, bcc, fcc), while S
favors more open structures (beta-Po, simple cubic, bcc). These differences are
shown to be attributable to differences in the S and Se core states. All the
compressed phases of S and Se considered are calculated to have weak to
moderate electron-phonon coupling strengths consistent with superconducting
transition temperatures in the range of 1 to 20 K. Our results compare well
with experimental data on the beta-Po --> bcc transition pressure in Se and on
the superconducting transition temperature in beta-Po S. Further experiments
are suggested to search for the other structural phases predicted at higher
pressures and to test theoretical results on the electron-phonon interaction
and superconducting properties
Precise Tight-binding Description of the Band Structure of MgB2
We present a careful recasting of first-principles band structure
calculations for MgB2 in a non-orthogonal sp-tight-binding (TB) basis. Our TB
results almost exactly reproduce our full potential linearized augmented plane
wave results for the energy bands, the densities of states and the total
energies. Our procedure generates transferable Slater-Koster parameters which
should be useful for other studies of this important material.Comment: REVTEX, 2 Encapsulated PostScript Figure
The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure
We study the dynamics and properties of a turbulent flame, formed in the
presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type
turbulence in an unconfined system. Direct numerical simulations are performed
with Athena-RFX, a massively parallel, fully compressible, high-order,
dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion
model represents a stoichiometric H2-air mixture. The system being modeled
represents turbulent combustion with the Damkohler number Da = 0.05 and with
the turbulent velocity at the energy injection scale 30 times larger than the
laminar flame speed. The simulations show that flame interaction with
high-speed turbulence forms a steadily propagating turbulent flame with a flame
brush width approximately twice the energy injection scale and a speed four
times the laminar flame speed. A method for reconstructing the internal flame
structure is described and used to show that the turbulent flame consists of
tightly folded flamelets. The reaction zone structure of these is virtually
identical to that of the planar laminar flame, while the preheat zone is
broadened by approximately a factor of two. Consequently, the system evolution
represents turbulent combustion in the thin-reaction zone regime. The turbulent
cascade fails to penetrate the internal flame structure, and thus the action of
small-scale turbulence is suppressed throughout most of the flame. Finally, our
results suggest that for stoichiometric H2-air mixtures, any substantial flame
broadening by the action of turbulence cannot be expected in all subsonic
regimes.Comment: 30 pages, 9 figures; published in Combustion and Flam
Lattice dynamics and electron-phonon coupling in transition metal diborides
The phonon density-of-states of transition metal diborides TMB2 with TM = Ti,
V, Ta, Nb and Y has been measured using the technique of inelastic neutron
scattering. The experimental data are compared with ab initio density
functional calculations whereby an excellent agreement is registered. The
calculations thus can be used to obtain electron-phonon spectral functions
within the isotropic limit. A comparison to similar data for MgB2 and AlB2
which were subject of prior publications as well as parameters important for
the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure
Transition Spectra for a BCS Superconductor with Multiple Gaps: Model Calculations for MgB_2
We analyze the qualitative features in the transition spectra of a model
superconductor with multiple energy gaps, using a simple extension of the
Mattis-Bardeen expression for probes with case I and case II coherence factors.
At temperature T = 0, the far infrared absorption edge is, as expected,
determined by the smallest gap. However, the large thermal background may mask
this edge at finite temperatures and instead the secondary absorption edges
found at Delta_i+Delta_j may become most prominent. At finite T, if certain
interband matrix elements are large, there may also be absorption peaks at the
gap difference frequencies | Delta_i-Delta_j | . We discuss the effect of
sample quality on the measured spectra and the possible relation of these
predictions to the recent infrared absorption measurement on MgB_2
- …