4,133 research outputs found

    Hairpin RNA: a secondary structure of primary importance

    Get PDF
    Abstract.: An RNA hairpin is an essential secondary structure of RNA. It can guide RNA folding, determine interactions in a ribozyme, protect messenger RNA (mRNA) from degradation, serve as a recognition motif for RNA binding proteins or act as a substrate for enzymatic reactions. In this review, we have focused on cis-acting RNA hairpins in metazoa, which regulate histone gene expression, mRNA localization and translation. We also review evolution, mechanism of action and experimental use of trans-acting microRNAs, which are coded by short RNA hairpins. Finally, we discuss the existence and effects of long RNA hairpin in animals. We show that several proteins previously recognized to play a role in a specific RNA stem-loop function in cis were also linked to RNA silencing pathways where a different type of hairpin acts in trans. Such overlaps indicate that the relationship between certain mechanisms that recognize different types of RNA hairpins is closer than previously though

    Interplay between mesoscopic phase separation and bulk magnetism in the layered NaxCoO2

    Full text link
    Specific heat of the layered NaxCoO2 (x=0.65, 0.70 and 0.75) oxides has been measured in the temperature range of 3-360 K and magnetic field of 0 and 9 T. The analysis of data, assuming the combined effect of inter-layer superexchange and the phase separation into mesoscopic magnetic domains with localized spins embedded in a matrix with itinerant electronic character, suggests that the dominant contribution to the specific heat in the region of short-range ordering is mediated by quasi-2D antiferromagnetic clusters, perpendicular to the CoO2 layers

    Time-evolution of Heat Affected Zone (HAZ) of Friction Stir Welds of AA7075-T651

    Get PDF
    Friction Stir Welding (FSW) is a novel solid-phase welding process, which has proved to have a great potential for the realization of welded joints in materials with poor weldability such as heat-treatable aluminum alloys. However, the thermal cycles generated during FSW change the mechanical properties in heat affected zone (HAZ) due to two effects: over-age and re-dissolution of hardening precipitates. In other hand, the re-dissolved precipitates produce a evolution of both the microstructure and mechanical properties due to the natural aging phenomenon. The aim of this paper was to analyze the microstructural evolution in the HAZ of FSW joints in AA7075-T651 alloy. For this purpose samples FSW welded butt plate 4 mm in thickness. On the welded joint microstructural characterization was performed by light microscopy (LM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) and Vickers microhardness profiles (HV) after different elapsed times post welding. It was observed that the hardness increases with time after welding, due to the evolution of the phases present.Fil: Pastor, A.. Universidad Nacional de San Martin. Instituto Sabato; Argentina. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Física de Metales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Svoboda, Hernán Gabriel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Construcciones y Estructuras. Laboratorio de Materiales y Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería ; Argentin

    Localization of Cortical Oscillations Induced by SCS Using Coherence

    Get PDF
    This paper suggests a method based on coherence analysis and scalp mapping of coherence suitable for more accurate localization of cortical oscillations induced by electric stimulation of the dorsal spinal cord (SCS), which were previously detected using spectral analysis. While power spectral density shows the increase of power during SCS only at small number of electrodes, coherence extends this area and sharpens its boundary simultaneously. Parameters of the method were experimentally optimized to maximize its reliability. SCS is applied to suppress chronic, intractable pain by patients, whom pharmacotherapy does not relieve. In our study, the pain developed in lower back and lower extremity as the result of unsuccessful vertebral discotomy, which is called failed-back surgery syndrome (FBSS). Our method replicated the results of previous analysis using PSD and extended them with more accurate localization of the area influenced by SCS

    Detection of Cortical Oscillations Induced by SCS Using Power Spectral Density

    Get PDF
    Chronic, intractable pain of lower back and lower extremity might develop as the result of unsuccessful surgery of back. This state called failed-back surgery syndrome (FBSS) cannot be effectively treated by pharmacotherapy. Electric stimulation of the dorsal spinal cord is applied to relieve the pain. According to the medical hypothesis, oscillatory activity, which might be related to the analgesic effects, may occur in the cortex during the stimulation. To confirm the presence of the SCS induced oscillations, a new method of detection was designed for this purpose. The analysis of EEG data was performed using power spectral density, confidence intervals, visualization and group statistic for its verification. Parameters of the method were experimentally optimized to maximize its reliability. During ongoing SCS, statistically significant changes were detected and localized at the stimulation frequency and/or its subharmonic or upper harmonic over central midline electrodes in eight patients

    NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines

    Get PDF
    Ca2+ influx through synaptic NMDA receptors (NMDA-Rs) triggers a variety of adaptive cellular processes. To probe NMDA-R-mediated [Ca2+] signaling, we used two-photon glutamate uncaging to stimulate NMDA-Rs on individual dendritic spines of CA1 pyramidal neurons in rat brain slices. We measured NMDA-R currents at the soma and NMDA-R-mediated [Ca2+] transients in stimulated spines (Delta[Ca2+]). Uncaging-evoked NMDA-R current amplitudes were independent of the size of the stimulated spine, implying that smaller spines contain higher densities of functional NMDA-Rs. The ratio of Delta[Ca2+] over NMDA-R current was highly variable (factor of 10) across spines, especially for small spines. These differences were not explained by heterogeneity in spine sizes or diffusional coupling between spines and their parent dendrites. In addition, we find that small spines have NMDA-R currents that are sensitive to NMDA-R NR2B subunit-specific antagonists. With block of NR2B-containing receptors, the range of Delta[Ca2+]/NMDA-R current ratios and their average value were much reduced. Our data suggest that individual spines can regulate the subunit composition of their NMDA-Rs and the effective fractional Ca2+ current through these receptors
    corecore