1,104 research outputs found
Snowmobiles in Antarctica
Snowmobiles are the main form of land transportation for field parties in Antarctica. Recently the United States Antarctic program turned almost exclusively to Ski-Doo Alpine 640-ER snowmobiles, the use and maintenance of which require specialized techniques. The first extensive Antarctic field test of these snowmobiles was made during three months of 1977-1978 while engaged in reconnaissance geologic and topographic exploration of the Orville Coast area. Snowmobiles are used to pull large loads of food and gear on two Nansen sledges. When crossing crevasse fields, they are driven remotely by persons on skis. To do this, modifications are made to the stock throttle to enable the engine both to be set at a constant speed and to be shorted out by pulling on a cord that trails behind the snowmobile; steering is by ropes attached to the front ski of the snowmobile. Proper "night" storage is necessary to ensure easiest starting in the morning and to minimize the effects of storms. A routine of trouble-shooting that rapidly isolated and corrected engine problems included first checking spark-plugs or gas-line filters, followed by checking carburetor jet adjustments, drive belt and oil/gas ratio. We found that Ski-Doos are well suited to Antarctica but would be more useful if carburetor fuel filters were replaced by in-line fuel filters and if snowmobiles were equipped with remote throttle controls, tachometers, speedometers, odometers, and a low-gear option
Energy Distribution of Micro-events in the Quiet Solar Corona
Recent imaging observations of EUV line emissions have shown evidence for
frequent flare-like events in a majority of the pixels in quiet regions of the
solar corona. The changes in coronal emission measure indicate impulsive
heating of new material to coronal temperatures. These heating or evaporation
events are candidate signatures of "nanoflares" or "microflares" proposed to
interpret the high temperature and the very existence of the corona. The energy
distribution of these micro-events reported in the literature differ widely,
and so do the estimates of their total energy input into the corona. Here we
analyze the assumptions of the different methods, compare them by using the
same data set and discuss their results.
We also estimate the different forms of energy input and output, keeping in
mind that the observed brightenings are most likely secondary phenomena. A
rough estimate of the energy input observed by EIT on the SoHO satellite is of
the order of 10% of the total radiative output in the same region. It is
considerably smaller for the two reported TRACE observations. The discrepancy
can be explained partially by different thresholds for flare detection. There
is agreement on the slope and the absolute value of the distribution if the
same method were used and a numerical error corrected. The extrapolation of the
power law to unobserved energies that are many orders of magnitude smaller
remains questionable. Nevertheless, these micro-events and unresolved smaller
events are currently the best source of information on the heating process of
the corona
Quality Of Life And Epilepsy Surgery In Childhood And Adolescence.
Epilepsy can affect the quality of life (QOL) of patients. The temporal lobe epilepsy (TLE) is often refractory to medication, which has an adverse impact on QOL. The surgery can be a form to control the seizures and to improve the QOL of the patients. The aim of this study was to verify the QOL of children and adolescents with TLE who underwent surgery for epilepsy, comparing QOL before and after surgery and investigating which parameters showed improvement. We used semi-structured questionnaire in the pre-and post-surgery in 13 patients. The data were analyzed using the Wilcoxon test. The analysis showed that there was general improvement in the QOL postoperatively. There was improvement in general health issues, adverse effects of antiepileptic drugs and the relationship with parents. When properly indicated, epilepsy surgery improves quality of life of patients with TLE.6923-
On the magnetic structure and wind parameter profiles of Alfven wave driven winds in late-type supergiant stars
Cool stars at giant and supergiant evolutionary phases present low velocity
and high density winds, responsible for the observed high mass-loss rates.
Although presenting high luminosities, radiation pressure on dust particles is
not sufficient to explain the wind acceleration process. Among the possible
solutions to this still unsolved problem, Alfven waves are, probably, the most
interesting for their high efficiency in transfering energy and momentum to the
wind. Typically, models of Alfven wave driven winds result in high velocity
winds if they are not highly damped. In this work we determine
self-consistently the magnetic field geometry and solve the momentum, energy
and mass conservation equations, to demonstrate that even a low damped Alfven
wave flux is able to reproduce the low velocity wind. We show that the magnetic
fluxtubes expand with a super-radial factor S>30 near the stellar surface,
larger than that used in previous semi-empirical models. The rapid expansion
results in a strong spatial dilution of the wave flux. We obtained the wind
parameter profiles for a typical supergiant star of 16 M_sun. The wind is
accelerated in a narrow region, coincident with the region of high divergence
of the magnetic field lines, up to 100 km/s. For the temperature, we obtained a
slight decrease near the surface for low damped waves, because the wave heating
mechanism is less effective than the radiative losses. The peak temperature
occurs at 1.5 r_0 reaching 6000 K. Propagating outwards, the wind cools down
mainly due to adiabatic expansion.Comment: to appear in the MNRA
Strong evidence that the common variant S384F in BRCA2 has no pathogenic relevance in hereditary breast cancer
INTRODUCTION: Unclassified variants (UVs) of unknown clinical significance are frequently detected in the BRCA2 gene. In this study, we have investigated the potential pathogenic relevance of the recurrent UV S384F (BRCA2, exon 10). METHODS: For co-segregation, four women from a large kindred (BN326) suffering from breast cancer were analysed. Moreover, paraffin-embedded tumours from two patients were analysed for loss of heterozygosity. Co-occurrence of the variant with a deleterious mutation was further determined in a large data set of 43,029 index cases. Nature and position of the UV and conservation among species were evaluated. RESULTS: We identified the unclassified variant S384F in three of the four breast cancer patients (the three were diagnosed at 41, 43 and 57 years of age). One woman with bilateral breast cancer (diagnosed at ages 32 and 50) did not carry the variant. Both tumours were heterozygous for the S384F variant, so loss of the wild-type allele could be excluded. Ser384 is not located in a region of functional importance and cross-species sequence comparison revealed incomplete conservation in the human, dog, rodent and chicken BRCA2 homologues. Overall, the variant was detected in 116 patients, five of which co-occurred with different deleterious mutations. The combined likelihood ratio of co-occurrence, co-segregation and loss of heterozygosity revealed a value of 1.4 × 10(-8 )in favour of neutrality of the variant. CONCLUSION: Our data provide conclusive evidence that the S384F variant is not a disease causing mutation
Screening of antioxidant properties of the apple juice using the front-face synchronous fluorescence and chemometrics
Fluorescence spectroscopy is gaining increasing attention in food analysis due to its higher sensitivity and selectivity as compared to other spectroscopic techniques. Synchronous scanning fluorescence technique is particularly useful in studies of multi-fluorophoric food samples, providing a further improvement of selectivity by reduction in the spectral overlapping and suppressing light-scattering interferences. Presently, we study the feasibility of the prediction of the total phenolics, flavonoids, and antioxidant capacity using front-face synchronous fluorescence spectra of apple juices. Commercial apple juices from different product ranges were studied. Principal component analysis (PCA) applied to the unfolded synchronous fluorescence spectra was used to compare the fluorescence of the entire sample set. The regression analysis was performed using partial least squares (PLS1 and PLS2) methods on the unfolded total synchronous and on the single-offset synchronous fluorescence spectra. The best calibration models for all of the studied parameters were obtained using the PLS1 method for the single-offset synchronous spectra. The models for the prediction of the total flavonoid content had the best performance; the optimal model was obtained for the analysis of the synchronous fluorescence spectra at Delta lambda = 110 nm (R (2) = 0.870, residual predictive deviation (RPD) = 2.7). The optimal calibration models for the prediction of the total phenolic content (Delta lambda = 80 nm, R (2) = 0.766, RPD = 2.0) and the total antioxidant capacity (Delta lambda = 70 nm, R (2) = 0.787, RPD = 2.1) had only an approximate predictive ability. These results demonstrate that synchronous fluorescence could be a useful tool in fast semi-quantitative screening for the antioxidant properties of the apple juices.info:eu-repo/semantics/publishedVersio
The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster
Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the
metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect
C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530.
Previous observations with FUSE have revealed Ly beta - Ly theta lines at this
redshift, thereby accurately constraining N(H I). We model the ionization of
the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log
n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and
thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is
pressure confined by an external medium because gravitational confinement would
require a very high ratio of dark matter to baryonic matter. Based on Milky Way
sight lines in which carbon and silicon abundances have been reliably measured
in the same interstellar cloud (including new measurements presented herein),
we argue that the overabundance of Si relative to C is not due to dust
depletion. Instead, this probably indicates that the gas has been predominately
enriched by Type II supernovae. Such enrichment is most plausibly provided by
an unbound galactic wind, given the absence of galaxies within a projected
distance of 100 kpc and the presence of galaxies capable of driving a wind at
larger distances. We also constrain the metallicity and physical conditions of
the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an
upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV
limit requires T > 10^{5.3} K. For either collisional ionization or
photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio
Intermediate- and High-Velocity Ionized Gas toward zeta Orionis
We combine UV spectra obtained with the HST/GHRS echelle, IMAPS, and
Copernicus to study the abundances and physical conditions in the predominantly
ionized gas seen at high (-105 to -65 km/s) and intermediate velocities (-60 to
-10 km/s) toward zeta Ori. We have high resolution (FWHM ~ 3.3-4.5 km/s) and/or
high S/N spectra for at least two significant ions of C, N, Al, Si, S, and Fe
-- enabling accurate estimates for both the total N(H II) and the elemental
depletions. C, N, and S have essentially solar relative abundances; Al, Si, and
Fe appear to be depleted by about 0.8, 0.3-0.4, and 0.95 dex, respectively.
While various ion ratios would be consistent with collisional ionization
equilibrium (CIE) for T ~ 25,000-80,000 K, the widths of individual
high-velocity absorption components indicate that T ~ 9000 K -- so the gas is
not in CIE. Analysis of the C II fine-structure excitation equilibrium yields
estimated densities (n_e ~ n_H ~ 0.1-0.2 cm^{-3}), thermal pressures (2 n_H T ~
2000-4000 cm^{-3}K), and thicknesses (0.5-2.7 pc) for the individual clouds. We
compare the abundances and physical properties derived for these clouds with
those found for gas at similar velocities toward 23 Ori and tau CMa, and also
with several models for shocked gas. While the shock models can reproduce some
features of the observed line profiles and some of the observed ion ratios,
there are also significant differences. The measured depletions suggest that
\~10% of the Al, Si, and Fe originally locked in dust in the pre-shock medium
may have been returned to the gas phase, consistent with predictions for the
destruction of silicate dust in a 100 km/s shock. The near-solar gas phase
abundance of carbon, however, seems inconsistent with the predicted longer time
scales for the destruction of graphite grains.Comment: 50 pages, 9 figures; aastex; accepted by Ap
- …