1,602 research outputs found
The Role of Social Capital in the Industrialization of the Food System
Selfishness of preferences alone will not support the coordination necessary for the industrialization of the food system. Social capital relationships of mutual sympathy (caring) yield socio-emotional goods that are important in the more personal business world of evolving incomplete contracts and alliances involving input suppliers, processors, and labor. Relationships are also critical when consumers are buying image as well as physical products. Management and policy alternatives constitute investment in social capital that can affect opportunism, risk, loyalty, and trust.Agricultural Finance,
Spontaneous spiking in an autaptic Hodgkin-Huxley set up
The effect of intrinsic channel noise is investigated for the dynamic
response of a neuronal cell with a delayed feedback loop. The loop is based on
the so-called autapse phenomenon in which dendrites establish not only
connections to neighboring cells but as well to its own axon. The biophysical
modeling is achieved in terms of a stochastic Hodgkin-Huxley model containing
such a built in delayed feedback. The fluctuations stem from intrinsic channel
noise, being caused by the stochastic nature of the gating dynamics of ion
channels. The influence of the delayed stimulus is systematically analyzed with
respect to the coupling parameter and the delay time in terms of the interspike
interval histograms and the average interspike interval. The delayed feedback
manifests itself in the occurrence of bursting and a rich multimodal interspike
interval distribution, exhibiting a delay-induced reduction of the spontaneous
spiking activity at characteristic frequencies. Moreover, a specific
frequency-locking mechanism is detected for the mean interspike interval.Comment: 8 pages, 10 figure
Minimizing Flow Time in the Wireless Gathering Problem
We address the problem of efficient data gathering in a wireless network
through multi-hop communication. We focus on the objective of minimizing the
maximum flow time of a data packet. We prove that no polynomial time algorithm
for this problem can have approximation ratio less than \Omega(m^{1/3) when
packets have to be transmitted, unless . We then use resource
augmentation to assess the performance of a FIFO-like strategy. We prove that
this strategy is 5-speed optimal, i.e., its cost remains within the optimal
cost if we allow the algorithm to transmit data at a speed 5 times higher than
that of the optimal solution we compare to
Coarse-Grained Simulations of Membranes under Tension
We investigate the properties of membranes under tension by Monte-Carlo
simulations of a generic coarse-grained model for lipid bilayers. We give a
comprising overview of the behavior of several membrane characteristics, such
as the area per lipid, the monolayer overlap, the nematic order, and pressure
profiles. Both the low-temperature regime, where the membranes are in a gel
phase, and the high-temperature regime, where they are in the fluid phase, are
considered. In the gel state, the membrane is hardly influenced by tension. In
the fluid state, high tensions lead to structural changes in the membrane,
which result in different compressibility regimes. The ripple state, which is
found at tension zero in the transition regime between the fluid and the gel
phase, disappears under tension and gives way to an interdigitated phase. We
also study the membrane fluctuations in the fluid phase. In the low tension
regime the data can be fitted nicely to a suitably extended elastic theory. At
higher tensions the elastic fit consistently underestimates the strength of
long-wavelength fluctuations. Finally, we investigate the influence of tension
on the effective interaction between simple transmembrane inclusions and show
that tension can be used to tune the hydrophobic mismatch interaction between
membrane proteins.Comment: 14 pages, 14 figures, accepted for publication in The Journal of
Chemical Physic
Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction
International audienceThe unsteady behaviour in shockwave turbulent boundary layer interaction is investigated by analysing results from a large eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. The interaction leads to a very-low-frequency motion near the foot of the shock, with a characteristic frequency that is three orders of magnitude lower than the typical frequency of the incoming boundary layer. Wall pressure data are first analysed by means of Fourier analysis, highlighting the low-frequency phenomenon in the interaction region. Furthermore, the flow dynamics are analysed by a dynamic mode decomposition which shows the presence of a low-frequency mode associated with the pulsation of the separation bubble and accompanied by a forward-backward motion of the shock
Symmetry-Projected Hartree-Fock-Bogoliubov Equations
Symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations are derived using
the variational ansatz for the generalized one-body density-matrix in the
Valatin form. It is shown that the projected-energy functional can be
completely expressed in terms of the HFB density-matrix and the pairing-tensor.
The variation of this projected-energy is shown to result in HFB equations with
modified expressions for the pairing-potential and the Hartree-Fock field. The
expressions for these quantities are explicitly derived for the case of
particle number-projection. The numerical applicability of this projection
method is studied in an exactly soluble model of a deformed single-j shell.Comment: 24 pages, 1 figur
Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: A novel approach
A physiologically-driven spectral index using two ocean-color bands of MODIS satellite sensor showed great potential to track seasonally changing photosynthetic light use efficiency (LUE) and stress-induced reduction in net primary productivity (NPP) of terrestrial vegetation. Based on these findings, we developed a simple ââcontinuous fieldââ model solely based on remotely sensed spectral data that could explain 88% of variability in flux-tower based daily NPP. For the first time, such a procedure is successfully tested at landscape level using satellite imagery. These findings highlight the unexplored potential of narrow-band satellite sensors to improve estimates of spatial and temporal distribution in terrestrial carbon flux
Transient growth in Taylor-Couette flow
Transient growth due to non-normality is investigated for the Taylor-Couette
problem with counter-rotating cylinders as a function of aspect ratio eta and
Reynolds number Re. For all Re < 500, transient growth is enhanced by
curvature, i.e. is greater for eta < 1 than for eta = 1, the plane Couette
limit. For fixed Re < 130 it is found that the greatest transient growth is
achieved for eta between the Taylor-Couette linear stability boundary, if it
exists, and one, while for Re > 130 the greatest transient growth is achieved
for eta on the linear stability boundary. Transient growth is shown to be
approximately 20% higher near the linear stability boundary at Re = 310, eta =
0.986 than at Re = 310, eta = 1, near the threshold observed for transition in
plane Couette flow. The energy in the optimal inputs is primarily meridional;
that in the optimal outputs is primarily azimuthal. Pseudospectra are
calculated for two contrasting cases. For large curvature, eta = 0.5, the
pseudospectra adhere more closely to the spectrum than in a narrow gap case,
eta = 0.99
- âŠ