630 research outputs found
The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 hr orbit
We report on the detection of a 400.99018734(1) Hz coherent signal in the
Rossi X-ray Timing Explorer light curves of the recently discovered X-ray
transient, IGR J17498-2921. By analysing the frequency modulation caused by the
orbital motion observed between August 13 and September 8, 2011, we derive an
orbital solution for the binary system with a period of 3.8432275(3) hr. The
measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a
lower limit of 0.17 Msun on the mass of the companion star, while an upper
limit of 0.48 Msun is set by imposing that the companion star does not overfill
its Roche lobe. We observe a marginally significant evolution of the signal
frequency at an average rate of -(6.3 +/- 1.9)E-14 Hz/s. The low statistical
significance of this measurement and the possible presence of timing noise
hampers a firm detection of any evolution of the neutron star spin. We also
present an analysis of the spectral properties of IGR J17498-2921 based on the
observations performed by the Swift-X-ray Telescope and the RXTE-Proportional
Counter Array between August 12 and September 22, 2011. During most of the
outburst, the spectra are modeled by a power-law with an index Gamma~1.7-2,
while values of ~3 are observed as the source fades into quiescence.Comment: 5 pages, 2 figures, accepted for publication by A&A Letters on
7/11/201
A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859
XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed
persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853.
Here, we present the results of the analysis of recent INTEGRAL observations,
aimed at assessing the long-term variability of the hard X-ray emission, and
thus the stability of the accretion state. We confirm that the source behaves
as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS
J12270-4859 hosts a neutron star in a propeller state, a state we investigate
in detail, developing a theoretical model to reproduce the associated X-ray and
gamma-ray properties. This model can be understood as being of a more general
nature, representing a viable alternative by which LMXBs can appear as
gamma-ray sources. In particular, this may apply to the case of millisecond
pulsars performing a transition from a state powered by the rotation of their
magnetic field, to a state powered by matter in-fall, such as that recently
observed from the transitional pulsar PSR J1023+0038. While the surface
magnetic field of a typical NS in a LMXB is lower by more than four orders of
magnitude than the much more intense fields of neutron stars accompanying
high-mass binaries, the radius at which the matter in-flow is truncated in a
NS-LMXB system is much lower. The magnetic field at the magnetospheric
interface is then orders of magnitude larger at this interface, and as
consequence, so is the power to accelerate electrons. We demonstrate that the
cooling of the accelerated electron population takes place mainly through
synchrotron interaction with the magnetic field permeating the interface, and
through inverse Compton losses due to the interaction between the electrons and
the synchrotron photons they emit. We found that self-synchrotron Compton
processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References
update
Comparing supernova remnants around strongly magnetized and canonical pulsars
The origin of the strong magnetic fields measured in magnetars is one of the
main uncertainties in the neutron star field. On the other hand, the recent
discovery of a large number of such strongly magnetized neutron stars, is
calling for more investigation on their formation. The first proposed model for
the formation of such strong magnetic fields in magnetars was through
alpha-dynamo effects on the rapidly rotating core of a massive star. Other
scenarios involve highly magnetic massive progenitors that conserve their
strong magnetic moment into the core after the explosion, or a common envelope
phase of a massive binary system. In this work, we do a complete re-analysis of
the archival X-ray emission of the Supernova Remnants (SNR) surrounding
magnetars, and compare our results with all other bright X-ray emitting SNRs,
which are associated with Compact Central Objects (CCOs; which are proposed to
have magnetar-like B-fields buried in the crust by strong accretion soon after
their formation), high-B pulsars and normal pulsars. We find that emission
lines in SNRs hosting highly magnetic neutron stars do not differ significantly
in elements or ionization state from those observed in other SNRs, neither
averaging on the whole remnants, nor studying different parts of their total
spatial extent. Furthermore, we find no significant evidence that the total
X-ray luminosities of SNRs hosting magnetars, are on average larger than that
of typical young X-ray SNRs. Although biased by a small number of objects, we
found that for a similar age, there is the same percentage of magnetars showing
a detectable SNR than for the normal pulsar population.Comment: 16 pages, 5 figures, Accepted for publication in MNRA
Secular spin-down of the AMP XTE J1751-305
Context. Of the 13 known accreting millisecond pulsars, only a few showed
more than one outburst during the RXTE era. XTE J1751-305 showed, after the
main outburst in 2002, other three dim outbursts. We report on the timing
analysis of the latest one, occurred on October 8, 2009 and serendipitously
observed from its very beginning by RXTE. Aims. The detection of the pulsation
during more than one outburst permits to obtain a better constraint of the
orbital parameters and their evolution as well as to track the secular spin
frequency evolution of the source. Methods. Using the RXTE data of the last
outburst of the AMP XTE J1751-305, we performed a timing analysis to improve
the orbital parameters. Because of the low statistics, we used an epoch folding
search technique on the whole data set to improve the local estimate of the
time of ascending node passage. Results. Using this new orbital solution we
epoch folded data obtaining three pulse phase delays on a time span of 1.2
days, that we fitted using a constant spin frequency model. Comparing this
barycentric spin frequency with that of the 2002 outburst, we obtained a
secular spin frequency derivative of -0.55(12) x 10^{-14} Hz s^{-1}. In the
hypothesis that the secular spin-down is due to a rotating magneto-dipole
emission, consistently with what is assumed for radio pulsars, we estimate the
pulsar's magnetic dipole value. We derive an estimate of the magnetic field
strength at the polar cap of B_{PC} = 4.0(4) x 10^8 Gauss, for a neutron star
mass of 1.4M\odot, assuming the Friedman Pandharipande Skyrme equation of
state.Comment: 7 pages, 4 figures, accepted for publication on A&
Spin frequency distributions of binary millisecond pulsars
Rotation-powered millisecond radio pulsars have been spun up to their present
spin period by a - yr long X-ray-bright phase of accretion of
matter and angular momentum in a low-to-intermediate mass binary system.
Recently, the discovery of transitional pulsars that alternate cyclically
between accretion and rotation-powered states on time scales of a few years or
shorter, has demonstrated this evolutionary scenario. Here, we present a
thorough statistical analysis of the spin distributions of the various classes
of millisecond pulsars to assess the evolution of their spin period between the
different stages. Accreting sources that showed oscillations exclusively during
thermonuclear type I X-ray bursts (nuclear-powered millisecond pulsars) are
found to be significantly faster than rotation-powered sources, while accreting
sources that possess a magnetosphere and show coherent pulsations (accreting
millisecond pulsars) are not. On the other hand, if accreting millisecond
pulsars and eclipsing rotation-powered millisecond pulsars form a common class
of transitional pulsars, these are shown to have a spin distribution
intermediate between the faster nuclear-powered millisecond pulsars and the
slower non-eclipsing rotation-powered millisecond pulsars. We interpret these
findings in terms of a spin-down due to the decreasing mass-accretion rate
during the latest stages of the accretion phase, and in terms of the different
orbital evolutionary channels mapped by the various classes of pulsars. We
summarize possible instrumental selection effects, showing that even if an
unbiased sample of pulsars is still lacking, their influence on the results of
the presented analysis is reduced by recent improvements in instrumentation and
searching techniques.Comment: Accepted for publication in A&A (6 pages, 4 figures
The neural basis of sign language processing in deaf signers: An activation likelihood estimation meta-analysis
The neurophysiological response during processing of sign language (SL) has been studied since the advent of Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI). Nevertheless, the neural substrates of SL remain subject to debate, especially with regard to involvement and relative lateralization of SL processing without production in (left) inferior frontal gyrus (IFG; e.g., Campbell, MacSweeney, & Waters, 2007; Emmorey, 2006, 2015). Our present contribution is the first to address these questions meta-analytically, by exploring functional convergence on the whole-brain level using previous fMRI and PET studies of SL processing in deaf signers. We screened 163 records in PubMed and Web of Science to identify studies of SL processing in deaf signers conducted with fMRI or PET that reported foci data for one of the two whole-brain contrasts: (1) “SL processing vs. control” or (2) “SL processing vs. low-level baseline”. This resulted in a total of 21 studies reporting 23 experiments matching our selection criteria. We manually extracted foci data and performed a coordinate-based Activation Likelihood Estimation (ALE) analysis using GingerALE (Eickhoff et al., 2009). Our selection criteria and the ALE method allow us to identify regions that are consistently involved in processing SL across studies and tasks. Our analysis reveals that processing of SL stimuli of varying linguistic complexity engages widely distributed bilateral fronto-occipito-temporal networks in deaf signers. We find significant clusters in both hemispheres, with the largest cluster (5240 mm3) being located in left IFG, spanning Broca’s region (posterior BA 45 and the dorsal portion of BA 44). Other clusters are located in right middle and inferior temporal gyrus (BA 37), right IFG (BA 45), left middle occipital gyrus (BA 19), right superior temporal gyrus (BA 22), left precentral and middle frontal gyrus (BA 6 and 8), as well as left insula (BA 13). On these clusters, we calculated lateralization indices using hemispheric and anatomical masks: SL comprehension is slightly left-lateralized globally, and strongly left-lateralized in Broca’s region. Sub-regionally, left-lateralization is strongest in BA 44 (Table 1). Next, we performed a contrast analysis between SL and an independent dataset of action observation in hearing non-signers (Papitto, Friederici, & Zaccarella, 2019) to determine which regions are associated with processing of human actions and movements irrespective of the presence of linguistic information. Only studies of observation of non-linguistic manual actions were included in the final set (n = 26), for example, excluding the handling of objects. Significant clusters involved in the linguistic aspects of SL comprehension were found in left Broca’s region (centered in dorsal BA 44), right superior temporal gyrus (BA 22), and left middle frontal and precentral gyrus (BA 6 and 8; Figure 1A, B, D and E). Meta-analytic connectivity modelling for the surviving cluster in Broca’s region using the BrainMap database then revealed that it is co-activated with the classical language network and functionally primarily associated with cognition and language processing (Figure 1C and D). In line with studies of spoken and written language processing (Zaccarella, Schell, & Friederici, 2017; Friederici, Chomsky, Berwick, Moro, & Bolhuis, 2017), our meta-analysis points to Broca’s region and especially left BA 44 as a hub in the language network that is involved in language processing independent of modality. Right IFG activity is not language-specific but may be specific to the visuo-gestural modality (Campbell et al., 2007). References Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H. B., & Zilles, K. (1999). Broca’s region revisited: Cytoarchitecture and intersubject variability. The Journal of Comparative Neurology, 412(2), 319-341. Campbell, R., MacSweeney, M., & Waters, D. (2007). Sign language and the brain: A review. Journal of Deaf Studies and Deaf Education, 13(1), 3-20. doi: 10.1093/deafed/enm035 Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907-2926. doi: 10.1002/hbm.20718 Emmorey, K. (2006). The role of Broca’s area in sign language. In Y. Grodzinsky & K. Amunts (Eds.), Broca’s region (p. 169-184). Oxford, England: Oxford UP. Emmorey, K. (2015). The neurobiology of sign language. In A. W. Toga, P. Bandettini, P. Thompson, & K. Friston (Eds.), Brain mapping: An encyclopedic reference (Vol. 3, p. 475-479). London, England: Academic Press. doi: 10.1016/B978-0-12-397025-1.00272-4 Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind and brain. Nature Human Behaviour. doi: 10.1038/s41562-017-0184-4 Matsuo, K., Chen, S.-H. A., & Tseng, W.-Y. I. (2012). AveLI: A robust lateralization index in functional magnetic resonance imaging using unbiased threshold-free computation. Journal of Neuroscience Methods, 205(1), 119-129. doi: 10.1016/j.jneumeth.2011.12.020 Papitto, G., Friederici, A. D., & Zaccarella, E. (2019). A neuroanatomical comparison of action domains using Activation Likelihood Estimation meta-analysis [Unpublished Manuscript, Max Planck Institute for Human Cognitive & Brain Sciences]. Leipzig, Germany. Zaccarella, E., Schell, M., & Friederici, A. D. (2017). Reviewing the functional basis of the syntactic Merge mechanism for language: A coordinate-based activation likelihood estimation meta-analysis. Neuroscience & Biobehavioral Reviews, 80, 646-656. doi: 10.1016/j.neubiorev.2017.06.01
Measuring the spin up of the Accreting Millisecond Pulsar XTE J1751-305
We perform a timing analysis on RXTE data of the accreting millisecond pulsar
XTE J1751-305 observed during the April 2002 outburst. After having corrected
for Doppler effects on the pulse phases due to the orbital motion of the
source, we performed a timing analysis on the phase delays, which gives, for
the first time for this source, an estimate of the average spin frequency
derivative = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting
from the spin-up of the neutron star deriving a dynamical estimate of the mass
accretion rate and comparing it with the one obtained from X-ray flux.
Constraints on the distance to the source are discussed, leading to a lower
limit of \sim 6.7 kpc.Comment: 7 pages, 3 figures, Accepted for publication by MNRA
Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence
It is commonly believed that millisecond radio pulsars have been spun up by
transfer of matter and angular momentum from a low-mass companion during an
X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that
of the accreting millisecond X-ray pulsars, transient systems that show periods
of X-ray quiescence during which radio emission could switch on. The aim of
this work is to search for millisecond pulsations from three accreting
millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658,
observed during their quiescent X-ray phases at high radio frequencies (5 - 8
GHz) in order to overcome the problem of the free-free absorption due to the
matter engulfing the system. A positive result would provide definite proof of
the recycling model, providing the direct link between the progenitors and
their evolutionary products. The data analysis methodology has been chosen on
the basis of the precise knowledge of orbital and spin parameters from X-ray
observations. It is subdivided in three steps: we corrected the time series for
the effects of (I) the dispersion due to interstellar medium and (II) of the
orbital motions, and finally (III) folded modulo the spin period to increase
the signal-to-noise ratio. No radio signal with spin and orbital
characteristics matching those of the X-ray sources has been found in our
search, down to very low flux density upper limits. We analysed several
mechanisms that could have prevented the detection of the signal, concluding
that the low luminosity of the sources and the geometric factor are the most
likely reasons for this negative result.Comment: 5 pages, 3 figures. Accepted for publication by A&
Swift J1734.5-3027: a new long type-I X-ray bursting source
Swift J1734.5-3027 is a hard X-ray transient discovered by Swift while
undergoing an outburst in September 2013. Archival observations showed that
this source underwent a previous episode of enhanced X-ray activity in May-June
2013. In this paper we report on the analysis of all X-ray data collected
during the outburst in September 2013, the first that could be intensively
followed-up by several X-ray facilities. Our data-set includes INTEGRAL, Swift,
and XMM-Newton observations. From the timing and spectral analysis of these
observations, we show that a long type-I X-ray burst took place during the
source outburst, making Swift J1734.5-3027 a new member of the class of
bursting neutron star low-mass X-ray binaries. The burst lasted for about 1.9
ks and reached a peak flux of (6.01.8)10 erg cm
s in the 0.5-100 keV energy range. The estimated burst fluence in the
same energy range is (1.100.10)10 erg cm. By
assuming that a photospheric radius expansion took place during the first
200 s of the burst and that the accreted material was predominantly
composed by He, we derived a distance to the source of 7.21.5 kpc.Comment: Accepted for publication on A&
- …