890 research outputs found

    A QM-CAMD approach to solvent design for optimal reaction rates

    Get PDF
    The choice of solvent in which to carry out liquid-phase organic reactions often has a large impact on reaction rates and selectivity and is thus a key decision in process design. A systematic methodology for solvent design that does not require any experimental data on the effect of solvents on reaction kinetics is presented. It combines quantum mechanical computations for the reaction rate constant in various solvents with a computer-aided molecular design (CAMD) formulation. A surrogate model is used to derive an integrated design formulation that combines kinetics and other considerations such as phase equilibria, as predicted by group contribution methods. The derivation of the mixed-integer nonlinear formulation is presented step-by-step. In the application of the methodology to a classic SN2 reaction, the Menschutkin reaction, the reaction rate is used as the key performance objective. The results highlight the tradeoffs between different chemical and physical properties such as reaction rate constant, solvent density and solid reactant solubility and lead to the identification of several promising solvents to enhance reaction performance

    Reentrant Superconductivity and Superconducting Critical Temperature Oscillations in F/S/F trilayers of Cu41Ni59/Nb/Cu41Ni59 Grown on Cobalt Oxide

    Full text link
    Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers constitute the core of a superconducting spin valve. The switching effect of the spin valve is based on interference phenomena occurring due to the proximity effect at the S/F interfaces. A remarkable effect is only expected if the core structure exhibits strong critical temperature oscillations, or most favorable, reentrant superconductivity, when the thickness of the ferromagnetic layer is increased. The core structure has to be grown on an antiferromagnetic oxide layer (or such layer to be placed on top) to pin by exchange bias the magnetization-orientation of one of the ferromagnetic layers. In the present paper we demonstrate that this is possible, keeping the superconducting behavior of the core structure undisturbed.Comment: 22 pages, 12 figures, 1 tabl

    Memory Effect and Triplet Pairing Generation in the Superconducting Exchange Biased Co/CoOx/Cu41Ni59/Nb/Cu41Ni59 Layered Heterostructure

    Full text link
    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, the resistive state of which depends on the preceding magnetic field polarity. The effect is based on a strong exchange bias (about -2 kOe) on a diluted ferromagnetic copper-nickel alloy and generation of a long range odd in frequency triplet pairing component. The difference of high and low resistance states at zero magnetic field is 90% of the normal state resistance for a transport current of 250 {\mu}A and still around 42% for 10 {\mu}A. Both logic states of the structure do not require biasing fields or currents in the idle mode.Comment: 9 pages, 4 figures, Accepted to Applied Physics Letter

    Chain Formation by Spin Pentamers in eta-Na9V14O35

    Full text link
    The nature of the gapped ground state in the quasi-one-dimensional compound eta-Na9V14O35 cannot easily be understood, if one takes into account the odd number of spins on each structural element. Combining the results of specific heat, susceptibility and electron spin resonance measurements we show that eta-Na9V14O35 exhibits a novel ground state where multi-spin objects build up a linear chain. These objects - pentamers - consist of five antiferromagnetically arranged spins with effective spin 1/2. Their spatial extent results in an exchange constant along the chain direction comparable to the one in the high-temperature state.Comment: 6 pages, 5 figure

    Ferromagnetism in the large-U Hubbard model

    Full text link
    We study the Hubbard model on a hypercubic lattice with regard to the possibility of itinerant ferromagnetism. The Dynamical Mean Field theory is used to map the lattice model on an effective local problem, which is treated with help of the Non Crossing Approximation. By investigating spin dependent one-particle Green's functions and the magnetic susceptibility, a region with nonvanishing ferromagnetic polarization is found in the limit U→∞U\to\infty. The δ\delta-T-phase diagram as well as thermodynamic quantities are discussed. The dependence of the Curie temperature on the Coulomb interaction and the competition between ferromagnetism and antiferromagnetism are studied in the large UU limit of the Hubbard model.Comment: 4 pages, 5 figures, accepted for publication in Physical Review B, Rapid Communication

    Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER

    Get PDF
    The TRACER cosmic-ray detector, first flown on long-duration balloon (LDB) in 2003 for observations of the major primary cosmic-ray nuclei from oxygen (Z=8) to iron (Z=26), has been upgraded to also measure the energies of the lighter nuclei, including the secondary species boron (Z=5). The instrument was used in another LDB flight in 2006. The properties and performance of the modified detector system are described, and the analysis of the data from the 2006 flight is discussed. The energy spectra of the primary nuclei carbon (Z=6), oxygen, and iron over the range from 1 GeV amu−1^{-1} to 2 TeV amu−1^{-1} are reported. The data for oxygen and iron are found to be in good agreement with the results of the previous TRACER flight. The measurement of the energy spectrum of boron also extends into the TeV amu−1^{-1} region. The relative abundances of the primary nuclei, such as carbon, oxygen, and iron, above ∼10\sim10 GeV amu−1^{-1} are independent of energy, while the boron abundance, i.e. the B/C abundance ratio, decreases with energy as expected. However, there is an indication that the previously reported E−0.6E^{-0.6} dependence of the B/C ratio does not continue to the highest energies.Comment: 16 pages, 18 figures. Accepted for publication in Ap

    Magnetic Properties of the t-J Model in the Dynamical Mean-Field Theory

    Full text link
    We present a theory for the spin correlation function of the t-J model in the framework of the dynamical mean-field theory. Using this mapping between the lattice and a local model we are able to obtain an intuitive expression for the non-local spin susceptibility, with the corresponding local correlation function as input. The latter is calculated by means of local Goldstone diagrams following closely the procedures developed and successfully applied for the (single impurity) Anderson model.We present a systematic study of the magnetic susceptibility and compare our results with those of a Hubbard model at large U. Similarities and differences are pointed out and the magnetic phase diagram of the t-J model is discussed.Comment: 28 pages LaTeX, postscript figures as compressed and uuencoded file included fil

    Numerical Renormalization Group Calculations for the Self-energy of the impurity Anderson model

    Full text link
    We present a new method to calculate directly the one-particle self-energy of an impurity Anderson model with Wilson's numerical Renormalization Group method by writing this quantity as the ratio of two correlation functions. This way of calculating Sigma(z) turns out to be considerably more reliable and accurate than via the impurity Green's function alone. We show results for the self-energy for the case of a constant coupling between impurity and conduction band (ImDelta = const) and the effective Delta(z) arising in the Dynamical Mean Field Theory of the Hubbard model. Implications to the problem of the metal-insulator transition in the Hubbard model are also discussed.Comment: 18 pages, 9 figures, submitted to J. Phys.: Condens. Matte

    Extreme climatic events down-regulate the grassland biomass response to elevated carbon dioxide

    Get PDF
    Terrestrial ecosystems are considered as carbon sinks that may mitigate the impacts of increased atmospheric CO2 concentration ([CO2]). However, it is not clear what their carbon sink capacity will be under extreme climatic conditions. In this study, we used long-term (1998–2013) data from a C3 grassland Free Air CO2 Enrichment (FACE) experiment in Germany to study the combined effects of elevated [CO2] and extreme climatic events (ECEs) on aboveground biomass production. CO2 fertilization effect (CFE), which represents the promoted plant photosynthesis and water use efficiency under higher [CO2], was quantiffied by calculating the relative differences in biomass between the plots with [CO2] enrichment and the plots with ambient [CO2]. Down-regulated CFEs were found when ECEs occurred during the growing season, and the CFE decreases were statistically significant with p well below 0.05 (t-test). Of all the observed ECEs, the strongest CFE decreases were associated with intensive and prolonged heat waves. These findings suggest that more frequent ECEs in the future are likely to restrict the mitigatory effects of C3 grassland ecosystems, leading to an accelerated warming trend. To reduce the uncertainties of future projections, the atmosphere-vegetation interactions, especially the ECEs effects, are emphasized and need to be better accounted
    • …
    corecore