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Abstract

The choice of solvent in which to carry out liquid-phase organic reactions often has a large

impact on reaction rates and selectivity and is thus a key decision in process design. A systematic

methodology for solvent design that does not require any experimental data on the effect of

solvents on reaction kinetics is presented. It combines quantum mechanical computations for

the reaction rate constant in various solvents with a computer-aided molecular design (CAMD)

formulation. A surrogate model is used to derive an integrated design formulation that combines

kinetics and other considerations such as phase equilibria, as predicted by group contribution

methods. The derivation of the mixed-integer nonlinear formulation is presented step-by-step.

In the application of the methodology to a classic SN2 reaction, the Menschutkin reaction,

the reaction rate is used as the key performance objective. The results highlight the trade-

offs between different chemical and physical properties such as reaction rate constant, solvent

density and solid reactant solubility and lead to the identification of several promising solvents

to enhance reaction performance.
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1. Introduction

Solvents are widely used in chemical processes and especially in the pharmaceutical and

agrochemical industries, where they can be involved in all steps of production, such as reaction,

separation and formulation. In fine chemicals manufacturing, a key function of the solvents

used in reactive steps is often to dissolve solid reactants (Kolář et al., 2002). In polymerization

technology, solvents are often used to control the reaction temperature and the viscosity of

the reaction mixture (Whelan, 1994). More generally, the selectivity, yield and rate of organic

reactions can be enormously influenced by the solvent used (Carlson et al., 1985; Reichardt and

Welton, 2010). The choice of solvent can therefore be used as a design variable to improve

reactor performance, in addition to other design considerations such as temperature or pressure.

Beyond the optimization of a single processing step, it can be beneficial to consider the selection

of reaction and separation solvents simultaneously (Elgue et al., 2004; Zhou et al., 2015b). From

this perspective, it is thus desirable to develop systematic methods to solvent selection or design

that can take into account, within a unified framework, the impact of the solvent on economic

performance. A particular challenge in developing such a design platform is how to evaluate

quantitatively the impact of a solvent on the reaction rate and how to integrate this often

demanding computation with other elements of the design methodology.

The reaction rate is, in its simplest form, a function of the rate constant, reaction order

and, under the assumption of an ideal solution, the concentrations of the reactants. These

quantities can be significantly affected by solvent choice. Indeed, the rate constant can vary by

several orders of magnitude from one solvent to another. For example, the rate constant for the

solvolysis of 2-chloro-2-methylpropane is 350, 000 times larger in water than in ethanol and the

rate constant for the reaction between trimethylamine and trimethylsulfonium ion is 119 times

larger in nitromethane than in water (Maki et al., 2009; Reichardt and Welton, 2010). If at least

one of the reactants is a solid at the reaction temperature, the maximum achievable reactant

concentration and hence the maximum reaction rate are affected by the choice of solvent: in

some cases the reactants are highly soluble, (e.g., calcium chloride in water) while in other

cases the reactants are nearly insoluble (e.g., eicosane in water) (Prausnitz et al., 1999), thereby

significantly reducing the reaction rate. Similarly partial miscibility may be observed between
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a liquid reactant and a solvent, limiting the achievable reaction rate. It is therefore essential to

take into account the reaction rate constant and concentration limits during solvent design.

At present, solvent selection is frequently based on experience and intuition or on costly

experimental investigations (Folić et al., 2007). This heuristic approach restricts the develop-

ment of processes with improved economic and environmental performance. In view of this,

the American Chemical Society Green Chemistry Institute Roundtable has identified the devel-

opment of solvent-selection techniques as a key priority area (Jiménez-González et al., 2011).

Computer-aided molecular design (CAMD) is a promising avenue of research for the develop-

ment of systematic methodologies, since CAMD approaches have been successfully applied to

solvent selection and design problems for separation processes (Gani et al., 1991; Odele and

Macchietto, 1993; Achenie et al., 2002; Giovanoglou et al., 2003; Adjiman et al., 2014; Ng et al.,

2015; Zhou et al., 2015b).

An underpinning concept in CAMD is to exploit the fact that a large number of chemical

species, as defined by their molecular structure, can be generated from a small set of structural

building groups. The suitability of these structures for a particular task or process can be eval-

uated with respect to a chosen criterion (for instance, maximizing the rate of a given reaction),

while considering physical and chemical constraints, as well as process constraints of varying

complexity. The application of CAMD techniques to the design of optimal reaction solvents can

in principle lead to the identification of rate-enhancing solvents from a large number of can-

didate compounds, and serve as a guide to an experimental investigation of suitable solvents.

This computational approach can accelerate the solvent-selection process and reduce the cost of

developing new reaction routes.

Building on these ideas, several CAMD approaches have been proposed in recent years, with

a focus on reactions. Three groups have proposed methodologies based on a combination of

experimental data and predictive models. A hybrid experimental/computer-aided approach has

been put forward (Folić et al., 2004, 2007, 2008), in which a predictive model of the rate con-

stant as a function of solvent structure is obtained based on a limited set of experimental kinetic

data (rate constants in six to eight solvents) and integrated into a CAMD framework to identify

promising solvents from a set of hundreds to thousands of potential molecular structures. This

approach has been extended to the design of gas-expanded liquids (GXLs) (Siougkrou et al.,
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2014), identifying the optimal solvent to be combined with carbon dioxide (CO2) based on its im-

pact on overall process performance, including kinetics, solubility and separation considerations.

While this work on GXLs presents an extension of the methodology to consider a broader set of

design criteria and to include solvent mixtures, its current application is restricted to a limited

set of organic solvents due to the lack of models that relate the composition of the GXL to its

properties. An alternative approach to solvent design for reactions, which combines knowledge

from industrial practice and physical insights as well as property prediction techniques, has been

developed (Gani et al., 2005, 2008). This technique requires a significant amount of experimental

data on the solvent and the reaction of interest. It has the benefit of taking many important

design considerations into account but solvent effects on the reaction rate constant are either ne-

glected or treated empirically. Zhou et al. (2014) recently proposed a screening approach based

on the use of COSMO-RS (Klamt et al., 2010) descriptors to identify promising solvents from a

given list of molecules. This was recently extended (Zhou et al., 2015b) to enable the design of

solvents from functional groups, rather than their selection from a list; the approach was applied

to the design of solvents for a Diels-Alder reaction, by considering the implications of solvent

choice on process design (Zhou et al., 2015b), and the presence of multiple reactions and the

impact of uncertainty (Zhou et al., 2015a). The impact of the solvent on catalyst solubility was

also incorporated within this framework (McBride et al., 2016). This overall methodology is

based on the regression of quantitative-structure property relations (QSPRs) linking the solvent

descriptors to the reaction rate constants. This step of the approach requires kinetic data on

the reactions of interest in various solvents.

Further to these techniques that combine experimenetal data and predictive models, two

approaches have been proposed to date that do not require any experimental kinetic data.

Stanescu and Achenie (2006) proposed a method in which promising solvents are obtained by

applying a CAMD approach which is based on physical property constraints only. Once this

set of candidate molecules has been found, each solvent in the set is screened in terms of the

reaction rate constant that can be achieved, as predicted by density functional theory (DFT).

Recently, following on from the work of Folić et al. (2007, 2008) and of direct relevance to our

current paper, a fully predictive approach, QM-CAMD, which integrates quantum mechanical

(QM) calculations within the CAMD problem, has been proposed and demonstrated on a model
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SN2 reaction (Struebing et al., 2013), achieving an increase in rate constant of 40% over the

initial solvents selected. The reaction rate constants in a few solvents, as predicted by QM

and conventional transition state theory (CTST), were used to build a surrogate model, which

was then used in a CAMD formulation to design the solvent that maximizes the rate constant.

The surrogate model was continuously improved through re-parameterization with an increasing

number of solvents, based on the solvents designed by CAMD, until convergence was achieved.

The application of the approach, however, was limited to the maximization of the rate constant,

with constraints on some physical properties of the solvent. Further progress is required to

develop comprehensive approaches that build on the strengths of the different methods proposed

to date and that can take into account the many effects of solvents on reaction performance.

The aim of our current work is to present a detailed account of a systematic CAMD approach,

QM-CAMD, for the ab initio design of reaction solvents, where a solvent is generally defined

as a compound in excess that does not undergo chemical transformations during the course of

the reaction. The methodology introduced by Struebing et al. (2013), in which the optimal

solvent is identified based on maximizing the reaction rate constant, is extended by considering

the reaction rate, a quantity that is of greater relevance to process performance. This requires

the maximum achievable concentration of the reactants, and consequently their solubility, to be

predicted, in addition to the reaction rate constant. We focus here on the solubility of solid

reactants. Group contribution methods (Fredenslund et al., 1975; Constantinou et al., 1995)

are used to determine the maximum amount of solid reactant(s) that can be dissolved in the

reactor for a given candidate solvent. As in Struebing et al. (2013), the rate constants are

predicted using QM calculations for a small set of solvents, and these computational data are

used to parameterize a simpler surrogate model that relates the rate constant to a few solvent

properties. These are in turn related to the solvent molecular structure via group-contribution

(GC) methods (Constantinou et al., 1995; Marrero and Gani, 2001; Sheldon et al., 2005; Folić

et al., 2007). The underlying multiscale model thus combines electronic structure methods with

bulk thermodynamic property prediction and reactor design.

In the next section, an overview of the proposed QM-CAMD methodology is presented.

This is followed by a more detailed explanation of specific aspects of the method, namely the

property prediction methods and the CAMD formulation. The methodology is then applied
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to a Menschutkin reaction (Menschutkin, 1890a; Barnard and Smith, 1981), which is used to

investigate the performance of the approach for several scenarios. A summary of the current

status of the approach and perspectives for future development are provided at the end of the

paper.

2. The QM-CAMD solvent design methodology

The QM-CAMD methodology for the design of solvents that enhance reaction kinetics is

illustrated in Figure 1. Initially, a small set of kinetic data for various solvents is used to

construct a surrogate model for the prediction of the reaction rate constant. The kinetic data

are obtained by combining QM calculations, the SMD continuum solvation model of the solvent

effects (Marenich et al., 2009), and group-contribution (GC) techniques. By solving a CAMD

problem which includes the surrogate model for the rate constant prediction as well as other

relevant constraints, a large space of possible solvents is explored. Thanks to the use of a

surrogate model, only a small number of computationally-intensive QM calculations is required.

The surrogate model is improved iteratively by adding QM-computed kinetic constants from

previously-designed solvents to the regression data, thereby increasing the statistical significance

and reliability of the model. This approach allows the identification of one or more promising

solvents and therefore helps to reduce the experimental effort required for solvent selection.

In the remainder of this section, each step of the approach is described in more detail. The

approach differs from that of Struebing et al. (2013) in Steps 4, 6 and 7.

2.1. Step 1: Define the design problem and set of initial solvents

In the first step, the reaction(s) to be studied are specified. Design constraints and objectives

are also identified and may include physical property and process considerations. In addition,

a set of initial solvents is specified, preferably with diverse physical properties and functional

groups. Six to ten solvents are typically used in the initial set. In the current work, these

are chosen by the user, although more systematic approaches (Wicaksono et al., 2014) can in

principle be used. If several reactions are being considered (e.g., parallel or series reactions), it

is not necessary to use the same set of initial solvents for all reactions.
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Start

Step 1:
Define solvent design problem and
initial solvent set

Step 2:
Calculate rate constant in specific sol-
vent(s) by QM

Step 3:
Construct surrogate model

Step 4:
Identify optimal solvent candidate
(CAMD)

Step 5:
New solvent
found?

Step 6:
Report list of the best solvents

Step 7:
Check solvents against additional cri-
teria

Stop

yes

no

Figure 1: The QM-CAMD solvent design algorithm.
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2.2. Step 2: Calculate the rate constant(s) for specific solvent(s) by QM

The aim of the second step is to obtain reliable values of the relevant rate constant(s) in

the chosen solvents. In earlier work (Folić et al., 2007, 2008), such values were determined

experimentally. In the QM-CAMD approach, quantum mechanical calculations are used. In

the current implementation of the approach, the required liquid-phase reaction rate constants

are computed based on CTST (Eyring, 1935; Evans and Polanyi, 1935). Under the common

assumption that the activity coefficients of the reactants and transition states can be taken to

be unity in all solvents, the choice of solvent affects the rate constant by changing the relative

stability of the reactant(s) and transition state(s). Considering a reaction

Reactants � TS→ Products,

where TS denotes the transition state, the rate constant kTST
j in a solvent j is given by

kTST
j = κ

kBT

h

1
co,L

NR+1∏
i=1

(
qo,IG
i

)νi exp
(
−∆‡Eel

RT

)
exp

−∆‡∆Go,solv
j

RT

 , (1)

where κ is the transmission coefficient; kB is the Boltzmann constant; T is the reaction temper-

ature in K; h is the Planck constant and co,L is the standard-state liquid-phase concentration

(1 mol · dm−3); qo,IG
i denotes the ideal gas partition function for component i, where the index i

runs over all NR reactants and the transition state; νi is the stoichiometric coefficient for compo-

nent i (a negative number for the reactants and +1 for the transition state); R denotes the ideal

gas constant; Eel denotes the gas phase electronic energy; ∆Go,solv
j denotes the standard-state

free energy of solvation in solvent j; and finally, ∆‡ denotes the difference in energy between the

transition state and the reactants, weighted by the stoichiometric coefficients:

∆‡Eel =
NR+1∑
i=1

νiE
el
i , (2)

and

∆‡∆Go,solv
j =

NR+1∑
i=1

νi∆Go,solv
j,i . (3)

Most of the relevant quantities can be derived from gas-phase quantum mechanical calculations.

This includes the partition functions qo,IG
i , the electronic energies Eel

i and the transmission

coefficient, which is computed here using the Wigner tunneling correction factor (Wigner, 1937),
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an approach which is appropriate when the extent of tunnelling is small or when the system

is at a high temperature. In order to compute the activation free energy of solvation, the

SMD continuum solvation model (Marenich et al., 2009) as implemented in Gaussian 09 (Frisch

et al.) is used. In this model, the solvent is treated as a continuum which affects the free

energy of the solutes (reactants and transition state) through the presence of a potential field

and through other effects such as dispersion, solvent re-arrangement to accommodate the solute,

and specific interactions between solvent and solute. The effect of the potential field is quantified

by computing its impact on the geometry and electrostatic potential of the solutes, while the

other components are taken into account via a free energy correction based on an empirical

expression that depends on a few solvent properties and the QM-derived solute geometry. The

physical properties of the solvent j used in the SMD model are its Abraham solute hydrogen

bond acidity Aj and basicity Bj (Abraham, 1993), the macroscopic surface tension at 298 K, γj ,

the refractive index at 298 K, nD,j , the dielectric constant at 298 K, εj , the aromaticity, φj , and

the halogenicity, ψj . The latter two properties are related to the fraction of aromatic atoms or

halogen atoms, respectively, in the solvent. In order to obtain values for these properties for any

solvent designed during the course of QM-CAMD, group contribution methods are used. These

are presented in Section 3.3 in the case of Aj and Bj , and in the Supplementary Information for

the other properties.

2.3. Step 3: Construct surrogate model

In Step 3 of the QM-CAMD algorithm, a surrogate model is built, based on the information

from Step 2. In our current paper, we use the solvatochromic equation, a linear free energy

relation (LFER), which was developed by Abraham et al. (1981, 1987a,b, 1988) for the prediction

of the effects of solvents on various functions of free energy, e.g., the logarithm of kinetic rate

constants, equilibrium constants, or free energies of solution. This linear relation offers a good

balance in terms of computational cost and reliability and has been shown to be successful

in correlating solvent effects. For instance, octanol/water partition coefficients (Kamlet et al.,

1977), the kinetics of Diels-Alder reactions (Cativiela et al., 1997), and those of Menschutkin

reactions (Folić et al., 2008) have been predicted successfully with this model. The general form
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of the equation is given by

log kCAMD
j = cTp1

j (4)

where kCAMD
j is the rate constant in solvent j as calculated by this equation; p1

j is a vector of

size Np + 1 with the first element equal to one and the remaining elements corresponding to Np

properties for solvent j; c is a vector of size Np + 1 that consists of reaction-specific coefficients.

The reaction-specific coefficients do not depend on solvent j and are obtained by linear regression

to the set of quantum-mechanical rate constants kTST
j , j = 1, . . . , Ns, computed for Ns different

solvents in Step 2. In order to estimate the reaction-specific coefficients, rate constant data in

at least as many solvents as there are parameters in Equation (4) need to be used. Of course,

the statistical significance of the coefficients, and hence the validity of the model, depends on

the number of solvents used in the regression. Here, a small set initial solvents is used to limit

the computational effort in the QM calculations. This set is progressively expanded as the

algorithm progresses (cf. Step 5). Folić et al. (2007) and Wicaksono et al. (2014) showed that

a solvatochromic equation regressed to a small set of solvents can be used to predict the rate

constant well, as long as the chosen solvents provide sufficient coverage of the solvent design space

(e.g., cover a wide range of polarities and represent diverse solvent classes, such as aromatics,

nitrates, amides, alcohols, carboxylic acids and halogenated components). The required solvent

properties are calculated using group contribution techniques (Folić et al., 2007; Marrero and

Gani, 2001; Sheldon et al., 2005) that have been developed on the basis of extensive experimental

data sets and are presented in Section 3.3.

2.4. Step 4: Obtain a candidate solvent by Computer-Aided Molecular Design

In the next step, the surrogate model for rate constant prediction obtained in Step 3 is

integrated into an optimization-based molecular design problem. The CAMD formulation is

extended from previous work (Folić et al., 2007; Struebing et al., 2013), with the addition of

concentration through solubility, as computed with the UNIFAC activity coefficient model (Fre-

denslund et al., 1975), and molar volume, as computed with the GC method of Constantinou

et al. (1995). This introduces a significant degree of non-linearity in the formulation, which be-

comes a mixed-integer non-linear programming (MINLP) problem. The objective of the CAMD

problem considered here is to maximize the rate of a given reaction, based on the computed rate
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constant and concentrations, and subject to a number of constraints, such as structure-property

relations, chemical feasibility and molecular complexity, and design constraints. The detailed

formulation of the CAMD problem is given in Section 3. The output of this step is a set of groups

that defines the molecular structure of the optimal solvent, and the corresponding reaction rate.

Because the GC methods used here do not distinguish between some isomers, the optimal set

of groups may describe more than one solvent structure.

2.5. Step 5: Test for convergence

In Step 5, a convergence criterion is applied. Given that the surrogate model is initially

based on kinetic data for a small set of solvents and that it is used for further extrapolation

to a large set of solvents (typically thousands of molecules) in Step 4, the surrogate model has

limited reliability at the beginning of the QM-CAMD algorithm. As a result, this step is used

to determine whether the surrogate model should be further refined. If the solvent designed

in Step 4 is already part of the solvent set that was used for regressing the surrogate model,

no further calculations are needed and the algorithm proceeds to Step 6. If a new solvent was

obtained in Step 4, the algorithm returns to Step 2, where the rate constant in this new solvent

is calculated with the QM model and is added to the set of solvents used in Step 3 to regress

the solvatochromic equation.

2.6. Step 6: Identify list of candidate solvents

In Step 6, once convergence has been achieved, the final formulation of the CAMD problem

from Step 3 is used to generate a list of solvent candidates. This is achieved by solving the MINLP

repeatedly, adding a new integer cut each time to eliminate the solvents already identified. In

the case study considered in this paper, a list of the best five solvents is generated.

2.7. Step 7: Design validation

In Step 7, the list of candidate solvents is checked against criteria which were not considered

in the CAMD formulation, such as the chemical stability and the reactivity of the solvent with

the reactants. If one or more solvents are eliminated from consideration, appropriate integer

cuts can be added to the CAMD problem in Step 6. Once the final check has been completed, a
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selection of promising solvents is available, and kinetic experiments can be performed to validate

the results.

3. The computer-aided molecular design (CAMD) problem

3.1. General formulation

The optimization problem that is solved in Step 4 of the QM-CAMD algorithm (Figure 1) is

derived from the work of Folić et al. (2008). However, the introduction of solubility calculations

and the change in the objective function to consider the reaction rate, rather than the rate

constant, results in an MINLP problem. Furthermore, the set of building groups considered by

Folić et al. (2008) is expanded by considering solvents that are represented by a single group, such

as chloroform or acetonitrile. Although these solvents cannot be modelled via several groups,

they are industrially important and should therefore be considered. This expansion of the design

space thus makes the methodology more broadly applicable. The set G of all groups used in

this work is given in the first column of Supplementary Information Table 1. The single-group

molecule contributions reported in the table were derived from the experimental data sets of

Lee (1996), Winget et al. (2010) and Lide (Lide, 2011). A further modification from Folić et al.

(2008) is the implementation of integer cuts needed in Step 6 to generate a ranked list of possible

solvent candidates. The general formulation of the MINLP problem can be written as follows:

max
p,n,y

f (p)

s.t. g1 (p, n, y) ≤ 0

g2 (n, y) ≤ 0

g3 (n, y) ≤ 0

d (p, n, y) ≤ 0

p ∈ P ⊂ Rm

n ∈ N ⊂ Rq

yi ∈ {0, 1}u i = 1, . . . , q,

(5)
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where the objective function f(p) is maximized with respect to the variables p, n and y, where p is

an m-dimensional vector of continuous variables denoting continuous process variables, including

physical properties, n is a q-dimensional vector of continuous variables denoting the number of

groups of each type in the solvent molecule, y is a q×umatrix of binary variables used to represent

the structure of the solvent molecules. Without loss of generality, equality constraints are

subsumed within the set of inequalities. Furthermore, the constraints are partitioned into several

subsets based on their physical interpretation: g1 denotes a set of structure-property constraints

and process or thermodynamic model equations, g2 a set of chemical feasibility constraints, g3

a set of molecular complexity equality constraints and d a set of design constraints related to

physical properties and/or process performance. While the chemical feasibility constraints are

essential to provide some assurance that only combinations of atom groups that can form a

molecule are designed as solvent, the molecular complexity constraints are set by the user and

can be treated as design constraints that limit the space of candidate solvents.

3.2. Objective function

In this work, the nonlinear objective function used is the rate of a given reaction, which is

to be maximized. In the case of a bimolecular second-order reaction, C1 + C2 → P1 + P2, the

objective function is:

f (p) = kCAMD[C1][C2], (6)

where [C1] and [C2] are the concentrations of reactant C1 and reactant C2, respectively, and

kCAMD denotes the rate constant obtained by applying the surrogate model, Equation (4). All

three quantities in the objective function are implicit functions of the molecular structure of the

solvent.

3.3. Structure-property and process constraints

The constraint set g1 (p, n, y) ≤ 0 consists of all the structure-property relations, thermody-

namic relations and process constraints required to evaluate the objective function and design

constraints. Some, but not all, constraints depend explicitly on the solvent molecular structure.

All relevant constraints are presented in this subsection for completeness.
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3.3.1. Relating the rate constant to molecular structure

A form of the solvatochromic equation tailored to rate constant calculations is used; it

includes five solvent properties (Np = 5) and therefore six reaction-specific coefficients:

log kCAMD = c0 + cAA+ cBB + cSS + cδδ + cHδ
2
H , (7)

where A, B, S, δ and δ2
H are the chosen solvent properties and are independent of the reaction.

A, B and S are the so-called Abraham descriptors (hydrogen bond acidity, hydrogen bond

basicity and polarizability/dipolarity respectively); δ denotes the polarizability correction term

and accounts for the greater variation of the solvent polarizability between different molecular

“classes” (e.g., aromatic versus aliphatic); δ2
H is the cohesive energy density.

Each property is related to the molecular structure of the solvent via a group contribution

method. The hydrogen bond acidity, Aj , is obtained based on a method developed by Sheldon

et al. (2005), using the revised coefficients proposed by Folić et al. (2007). It is given by:

A =


0.010641 + ∑

i∈G
ni ·Ai if yA = 1,

0 otherwise,
(8)

where Ai is the acidity contribution of group i, i ∈ G, the set of all functional groups (cf.

Supplementary Information Table 1 for the group contribution values), and the binary variable

yA is such that:

yA =


1 if 0.010641 + ∑

i∈G
ni ·Ai ≥ 0.029,

0 otherwise.
(9)

Equivalently, one can obtain the following algebraic expressions:

0 ≤ A ≤M · yA, (10)

−A+
∑
i∈G

ni ·Ai + yA − 0.989359 ≤ 0, (11)

A−
∑
i∈G

ni ·Ai − 0.010641 ≤ 0, (12)

∑
i∈G

ni ·Ai −M · yA − 0.018359 ≤ 0, (13)
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M · (yA − 1)−
∑
i∈G

ni ·Ai + 0.018359 ≤ 0, (14)

where M is a sufficiently large positive number (in this work M = 100). The hydrogen bond

basicity, B, is given by a similar relation (Sheldon et al., 2005; Folić et al., 2007):

B =


0.12371 + ∑

i∈G
ni ·Bi if yB = 1,

0 otherwise,
(15)

where Bi denotes the basicity contribution of group i (cf. Supplementary Information Table 1)

and yB denotes a binary variable defined as:

yB =


1 if 0.12371 + ∑

i∈G
ni ·Bi ≥ 0.124,

0 otherwise.
(16)

Recasting the logic relations into algebraic functions yields the following equations:

0 ≤ B ≤M · yB, (17)

−B +
∑
i∈G

ni ·Bi + yB − 0.87629 ≤ 0, (18)

B −
∑
i∈G

ni ·Bi − 0.12371 ≤ 0, (19)

∑
i∈G

ni ·Bi −M · yB − 0.00029 ≤ 0, (20)

M · (yB − 1)−
∑
i∈G

ni ·Bi + 0.00029 ≤ 0, (21)

For the polarizability/dipolarity S, the group contribution method of Folić et al. (2007) is

used:

S = 0.325675 +
∑
i∈G

ni · Si, (22)

where Si is the polarizability/dipolarity contribution of group i in G (cf. Supplementary Infor-

mation Table 1).
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The correction parameter for polarizability/dipolarity, δ, was introduced by Kamlet et al.

(1977) and is used to identify differences in the polarizability of three molecular classes: non-

halogenated aliphatics, polyhalogenated aliphatics and aromatics. It is defined as:

δ =



1 if the molecule is aromatic,

0.5 if the molecule is halogenated and aliphatic,

0 otherwise.

(23)

Although Kamlet et al. (1977) define a class of polyhalogenated aliphatic molecules for which

δ = 0.5, they appear to consider aliphatic solvents with a single halogen atom in this class. We

adopt this approach here. Two binary variables are required to express δ in terms of algebraic

equations. The first binary variable, y1, indicates whether aromatic groups are present in the

molecule:

y1 =


1 if ∑

i∈GAr

ni ≥ 1,

0 otherwise,
(24)

where GAr is the subset of aromatic groups (GAr ⊂ G, cf. Supplementary Information Table 2.

The second binary variable, y2, indicates whether the molecule is halogenated and not aromatic:

y2 =


1 if ∑

i∈GH

ni ≥ 1 and y1 = 0,

0 otherwise,
(25)

where GH is the subset of non-aromatic halogen-containing groups (GH ⊂ G) (cf. Supplementary

Information Table 2). This is described algebraically via Equations (26) to (30):

∑
i∈GAr

ni ≤
∑
i∈GAr

nUi · y1, (26)

y1 ≤
∑
i∈GAr

ni, (27)

y2 ≤
∑
i∈GH

ni, (28)

∑
i∈GH

ni ≤ (y2 + y1) ·
∑
i∈GH

nUi , (29)
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y1 + y2 ≤ 1, (30)

where the superscript U denotes the upper bound on the variable. The last equation ensures

that y1 and y2 cannot both be equal to 1. In the case of an aromatic solvent with a halogenated

branch, the molecule is classified as aromatic and the maximum correction, δ = 1, applied. The

correction parameter δ is given by:

δ = y1 + 0.5y2. (31)

The final solvent property required in the solvatochromic equation is the cohesive energy den-

sity δ2
H , which is defined as the square of the Hildebrand solubility parameter δH and is a function

of the liquid molar volume and enthalpy of vaporization of the solvent:

δ2
H

[ cal
cm3

]
= 0.238846 · ∆HV −RT · 10−3

Vm
, (32)

where the correlation is multiplied with 0.238846 to convert the units of δ2
H from MPa to

cal·cm−3, R denotes the ideal gas constant in J·mol−1·K−1 and T denotes the reaction tem-

perature in K. The enthalpy of vaporization ∆HV at a temperature of 298 K is determined by

using the first-order group contribution technique proposed by Marrero and Gani (2001):

∆HV

[ kJ
mol

]
=
∑
i∈G

ni ·HV,i + 11.733
[ kJ

mol

]
, (33)

where HV,i is the contribution of group i to the enthalpy of vaporization (cf. Supplementary

Information Table 1). The liquid molar volume of the solvent is predicted using the group

contribution approach proposed by Constantinou et al. (1995):

Vm

[
m3

kmol

]
=
∑
i∈G

ni · Vm,i + 0.01211
[

m3

kmol

]
, (34)

where Vm,i is the liquid molar volume contribution of group i (cf. Supplementary Information

Table 1). The nonlinear expression (32) is linearized (Maranas, 1996; Folić et al., 2007) by

making use of the discrete nature of the ni variables: these are expressed as linear combinations

of binary variables so that the nonlinear products of continuous and binary variables can be

replaced with linear inequalities.

17



3.3.2. Relating the reactant concentrations to the molecular structure of the solvent

The reactant concentrations are needed to calculate the reaction rate, in addition to the

reaction rate constant. For a batch or a plug flow reactor, the maximum concentrations of

the reactants, and hence reaction rate, that can be achieved correspond to the initial or inlet

concentrations. The initial or inlet mixture can be assumed to consist of the reactants and

solvent only, and thus to be free of products. The maximum concentrations depend on the mole

fractions of the reactants and the molar volume of the mixture:

[i] = xi
Vm,M

, ∀i ∈ R, (35)

where [i] denotes the molar concentration of component i, Vm,M is the liquid molar volume of

the mixture, and R is the set of reactants. In order to obtain the molar volume of the mixture,

ideal behaviour is assumed so that a linear combination of the pure component molar volumes

can be used:

Vm,M =
∑
i∈C

xiVm,i, (36)

where C denotes the set of components in the mixture (the reactants and the solvent) and Vm,i is

given by Equation (34) (Constantinou et al., 1995). The error introduced with the ideal mixture

assumption could in principle be avoided by using a group-contribution equation of state that

provides a reliable prediction of the liquid phase densities (e.g., see Lymperiadis et al. (2007)

and Papaioannou et al. (2014)). However, the group contribution parameter tables for such

equations (Lymperiadis et al., 2008; Dufal et al., 2014) do not yet allow the prediction of the

properties of all compounds considered in the case study of interest here.

The solubility of some of the reactants may limit the maximum achievable concentrations

and should therefore be taken into account in calculating the mole fractions of reactant that

can be present in the reaction medium. Strictly speaking, although the solvent is typically a

component in excess, the reaction medium consists of all components in the mixture, including

any reactants and products present. The multiple components in the reaction mixture are thus

taken into account when calculating reactant solubilities using the UNIFAC model. In modelling

reaction rate constants, however, it is assumed that the reaction medium is the solvent. This

is in keeping with the standard assumption that rate constants are independent of composition.
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It also reflects the fact that current models are not suited to a mixed reaction medium because

the solvent properties that describe the reaction medium in the SMD model (cf. Step 2 in

Section 2.2) and in the surrogate model (Equation (76)) are available only for a very limited set

of binary mixtures (e.g., see Ràfols et al. (1995); Siougkrou et al. (2014)). In view of this, we

ensure that the reaction medium is mostly solvent in the design problem formulation by limiting

the reactant mole fractions so that the mole fraction of solvent is at least twice that of the most

abundant reactant. This limit on the reactant concentrations is consistent with our objective to

design a solvent-based reaction system. In our proposed formulation, solubility is thus treated as

a constraint on the maximum achievable mole fraction only when the thermodynamic solubility

of a given reactant in the mixture is lower than a threshold value, xmax,eq. If it is greater than

this threshold, solubility is not a limiting factor on the reaction rate and the reactant mole

fraction is set to the threshold value.

To embed this in the optimization problem formulation, two mixtures and their associated

mole fractions are considered in the model: the equilibrium mixture, for the calculation of

phase equilibrium and hence solubility of component i, xi,eq, and the reactor mixture, for the

determination of the actual mole fraction of component i in the reactor, xi, where

∑
i∈C

xi,eq = 1, (37)

∑
i∈C

xi = 1. (38)

For simplicity, we consider a ternary system involving components C1, C2 and C3, where C1

and C2 are reactants and C3 is the solvent. The model is developed for the case when only the

solubility of C2, a reactant which is solid at reaction conditions, may be a limiting factor but it

can readily be extended to other cases. A relationship between some of the properties of the pure

solid C2 and its solubility in the solvent can be obtained from a thermodynamic analysis (Poling

et al., 2000). To a good approximation, by assuming that the triple-point temperature is equal

to the melting point temperature and the effect of the change in the molar heat capacity on

solubility can be neglected (Poling et al., 2000), the solubility of C2 is given by:

ln (γC2 · xC2,eq) = −∆Hm,C2

RT

(
1− T

Tm,C2

)
, (39)
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where γC2 is the activity coefficient of reactant C2 in the liquid phase, at the reactor tempera-

ture, pressure and composition, xC2,eq denotes the mole fraction of reactant C2 at solid-liquid

equilibrium (its solubility), Tm,C2 is its normal melting temperature, ∆Hm,C2 is its enthalpy of

fusion, assumed to be constant, and T is the reaction temperature. For a given temperature, the

right-hand side of Equation (39) is constant. The UNIFAC method (Fredenslund et al., 1975) is

used to compute the activity coefficient of reactant C2 in a ternary mixture of C1, C2 and C3 as

a function of the molecular structure of the components in the mixture. The full set of UNIFAC

equations can be found in Poling et al. (2000). A user-specified value, x∗C1 , is used for the mole

fraction of reactant C1 in the equilibrium mixture, xC1,eq as well as in the reactor mixture, xC1 :

xC1,eq = xC1 = x∗C1 , (40)

The mole fraction, xC2 , of C2 in the reactor is defined as:

xC2 =


xC2,eq if xC2,eq ≤ xmax,eq,

xmax,eq otherwise.
(41)

To represent this choice algebraically, the binary variable yeq is introduced and defined as:

yeq =


0 if xC2,eq ≤ xmax,eq,

1 otherwise.
(42)

The value of the variable yeq is then given by the following set of equations:

xC2,eq − yeq − xmax,eq ≤ 0, (43)

and

−xC2,eq + (yeq − 1) + xmax,eq ≤ 0, (44)

Finally, the value of xC2 is given by

xC2 = xmax,eq · yeq + xC2,eq · (1− yeq) . (45)

This last equation can readily be re-formulated to eliminate the bilinear term xC2,eq · yeq.
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3.4. Chemical feasibility constraints

The chemical feasibility constraints, g2 (n, y) ≤ 0, ensure that only chemically-meaningful

combinations of the atom groups are put forward as candidate solvents.

3.4.1. Constraining variable ni to an integer

The number of groups of type i appearing in the designed molecule is defined by a continuous

variable ni, but only integer values of ni are meaningful. Therefore, a binary representation is

introduced to convert the continuous variable ni to a pseudo-integer variable:
K∑
k=1

2k−1yi,k − ni = 0, ∀i ∈ G (46)

where yi,k, k = 1, . . . ,K, constitutes a set of binary variables defining the occurrence of group

i. The value of K is chosen based on the desired maximum number of groups to appear in the

molecule.

3.4.2. Cyclic and acyclic structures

In our formulation, three types of molecular structures are allowed as solvent candidates;

these are acyclic, bicyclic and monocyclic structures. Here, a compound is deemed to be acyclic

if the combination of its groups can form an acyclic graph. If a group contains a cycle (e.g.,

if one were to include a group representing cyclopentyl in the design space) but is included

in a molecule which contains no cycles involving multiple groups, the compound is considered

to be acyclic. Furthermore, only aromatic cycles are considered in the design of bicyclic and

monocyclic structures – alicyclic compounds built from the aliphatic groups are not permitted.

The binary variables ya, yb and ym are used to define the molecular structure being designed,

with ya = 1 indicating an acyclic compound, ym = 1 a monocyclic compound and yb = 1 a

bicyclic compound. Since only one type of structure can be designed, the following constraint

is included:

ya + ym + yb = 1. (47)

A continuous variable m that can represent all three types of structures is needed to define

further constraints, such as the octet rule of Odele and Macchietto (1993). The continuous
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variable m is defined as:

m =



1 for an acyclic molecule,

0 for a monocyclic molecule,

−1 for a bicyclic molecule.

(48)

The variable m can be described as a function of the binary variables ya and yb:

m− (ya − yb) = 0. (49)

3.4.3. Aromatic molecules

As mentioned previously, only aromatic compounds are considered when designing cyclic

molecules. Hence, the cyclic backbone must consist of aromatic groups, as defined by the

set GAr shown in Supplementary Information Table 2. The knowledge that exactly six aromatic

groups are necessary to create a monocyclic molecule and ten aromatic groups are necessary to

create a bicyclic molecule leads to the following constraint:

∑
i∈GAr

ni − 6ym − 10yb = 0, (50)

where ni is the number of groups i appearing in the solvent.

3.4.4. Octet rule and molecular groups

Odele and Macchietto (1993) proposed the octet rule to ensure that the designed molecule

does not have any free bonds:

∑
i∈G

(2− vi)ni − 2m = 0, (51)

where vi is the valency of group i (the values of valency are listed in Supplementary Information

Table 1).

The formulation used in previous works (e.g., Folić et al. (2007, 2008)) is extended so that

solvents that are represented by a single (molecular) group are allowed to appear among acyclic

structures. Such molecules are typically too small for their properties to be calculated accurately

by GC methods. Molecular groups have a valency of 0 and therefore do not contribute to the

octet rule. Without further constraints, it would thus be possible for a molecular group to

appear alongside a combination of groups forming a chemically-feasible molecule, while satisfying
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Equation (51). The following constraints prevent such an occurrence by ensuring that when a

molecular group is selected, no other groups are included in the design:

∑
i∈G1

ni ≤ 1, (52)

∑
i∈G

ni −
∑
j∈G1

nj ≤
1−

∑
j∈G1

nj

nG,max, (53)

where i denotes a structural group in the solvent set G and j denotes a molecular group in set

G1 ⊂ G (cf. Supplementary Information Table 2).

3.4.5. Modified bonding rule

In GC techniques, bonding between any two given groups can only take place using a single

covalent bond because atom groups that contain double or triple bonds are defined as separate

groups, as in the CH2=C group, for example. A group with a valency of two must be bonded

to two distinct groups, which may or may not differ in terms of their chemical identities. Thus,

a CH2 group could be bonded to two CH3 groups or to a CH3 group and an OH group. Its

two free bonds should not, however, be bonded to same CH2, despite the fact that such an

arrangement is feasible under the octet rule. A constraint is therefore included to ensure that

adjacent groups can only be connected by a single covalent bond. A modified bonding rule

which is based on the bonding rule of Odele and Macchietto (1993), but provides an extension

to account for molecular groups, is proposed here:

nj (vj − 1) + 2

m− ∑
i∈G1

ni

−∑
i∈G

ni ≤ 0, ∀j ∈ G. (54)

3.5. Chemical complexity constraints

The size and functionality of the molecules designed can be restricted by the user in order

to eliminate combinations of groups that are unlikely to form good solvent molecules, or to

decrease the size of the design space. This is achieved by defining a set of chemical complexity

constraints, g3 (n, y) ≤ 0. While it is essential to place a limit on the size of the molecules

designed (e.g., in the form of a limit on the number of atom groups in the candidate solvents),

the inclusion of other constraints in the design problem is optional. All constraints used in the

case study discussed in our current work are presented here for completeness.
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3.5.1. Molecular size

First, the maximum size of the solvent to be designed is defined. A lower bound on the

number of groups nG,min and an upper bound on the number of groups nG,max are imposed by

the following constraints:

nG,min −
∑
i∈G

ni ≤ 0, (55)

∑
i∈G

ni ≤ nG,max. (56)

3.5.2. Number of groups of each type

The number of occurrences of each group type i is restricted by a specific upper bound nUi .

A tighter upper bound tailored to each group type i can be derived for each ni variable from

the structures in which the group can take part (e.g., cyclic or not) and can be related to the

corresponding binary variables (ya, yb and ym). The upper bounds on ni are given by the general

constraint:

ni − fi(ya, yb, ym) ≤ 0, ∀i ∈ G, (57)

where the linear functions fi(ya, yb, ym) are defined in Supplementary Information Table 3.

In addition to the upper bound constraint on each group type i, the number of groups from

a subset of the group types can also be limited by an upper bound. Thus, the number of groups

drawn from the subset of main groups GM (cf. Supplementary Information Table 2) is restricted

by

∑
i∈GM

ni ≤ nUG,a · ya + nUG,b · yb + nUG,m · ym, (58)

where nUG,a, nUG,b, and nUG,m denote the maximum number of main groups in acyclic, monocyclic

and bicyclic molecules, respectively.

A further subset of G on which an upper bound constraint is imposed is the set of functional

groups GF (cf. Supplementary Information Table 2). This is done to reflect the limited accuracy

of many first-order GC methods in predicting the properties of multifunctional molecules. The

number of functional groups which appear in the candidate solvents is restricted by imposing

a constant upper bound, nUi,F, on each group type i, and by applying an overall constraint
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that ensures that there are no groups from GF in bicyclic molecules, and a limited number in

monocyclic and acyclic molecules:
∑
i∈GF

ni
nUi,F

≤ ya + ym, (59)

where nUi,F is an upper bound on the number of occurrences of functional group i (cf., Supple-

mentary Information Table 4).

Finally, to help ensure the chemical stability of the molecule designed, the number of carbon-

carbon double bonds is restricted so that at most one such bond appears in the designed molecule:

nCH2=CH + nCH=CH + nCH2=C + nCH=C + nC=C ≤ 1. (60)

3.5.3. Branched molecules

When a monocyclic molecular structure is designed, side chains can only occur if one

branched aromatic group such as aC, aCCH or aCCH2 is included in the combination of groups

that make up the molecule. Three binary variables are introduced to define further constraints

on the size and the functionality of molecules that contain at least one of these groups. Three

binary variables are defined to indicate the presence of each of these groups:

yi =


1 if an aromatic group of type i occurs in the solvent molecule,

0 otherwise.

i ∈ {aC, aCCH, aCCH2}

(61)

The values of these binary variables are obtained by imposing two constraints per variable, in a

generalization of the formulation proposed by Folić et al. (2008):

ni − 0.9− nUi · yi ≤ 0, i ∈ {aC, aCCH, aCCH2}, (62)

yi − ni ≤ 0, i ∈ {aC, aCCH, aCCH2}. (63)

A further binary variable, ym,aC, is introduced to identify whether an aC group appears in a

monocyclic compound. Its value is defined as:

ym,aC =


1 if yaC + ym = 2,

0 otherwise.
(64)
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Equivalently,

ym + yaC − 1− ym,aC ≤ 0, (65)

2 · ym,aC − ym − yaC ≤ 0. (66)

In our current work, the aC group is constrained to appear at most once in monocyclic and

twice in bicyclic molecules as follows:

2yb + ym,aC − naC = 0. (67)

The complexity of the solvent molecules is further constrained by allowing at most one of aC,

aCCH and aCCH2 in a monocyclic molecule, thereby limiting the maximum number of side

chains to one. This condition is implemented by specifying:

ym,aC + yaCCH + yaCCH2 ≤ 1. (68)

The side chains of monocyclic molecules consist of chain-ending groups GCE and of non-chain-

ending groups GNCE (cf. Supplementary Information Table 2), where chain-ending groups GCE

can be attached directly to the aromatic backbone of the molecule or to a non-chain-ending

group GNCE. An aCCH group leads to two branches that normally consist of both chain-ending

and non-chain-ending groups. To reduce the complexity of the designed molecules one of these

branches is restricted to be a CH3 group by:

yaCCH ≤ nCH3 . (69)

Chain-ending groups can only appear up to three times in an acyclic molecule and once in an

aromatic molecule. This is described by:∑
i∈GCE

ni ≤ 3ya + ym,aC + yaCCH + yaCCH2 . (70)

Non-chain-ending groups are constrained to occur at most three times in acyclic molecules and

once in aromatic molecules by the following equation:∑
i∈GNCE

ni ≤ 3ya + ym,aC + yaCCH2 . (71)

We note that more complex molecules can easily be generated by removing some of chemical

complexity constraints or by increasing the limits on the number of groups. The chemical com-

plexity constraints provide a high degree of flexibility for the user, making it possible to increase

or decrease the number of molecules in the design space based on preferences or heuristics.
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3.6. Design constraints

The set of design constraints d (p, n, y) ≤ 0 is used to impose restrictions on the design

space, for instance based on the physical properties of the candidate solvent, its health and

safety performance, and other aspects relevant to the overall performance of the process (Gani

et al., 2005). Since the solvent must be in the liquid phase at reaction conditions, the normal

melting point of the solvent, Tm, and its boiling point, Tb, are constrained:

Tm ≤ Tm,max,

Tb,min ≤ Tb.

where Tm,max is the user-specified upper bound on the melting point and Tb,min is the user-

specified lower bound on the boiling point. The first-order GC method proposed by Marrero

and Gani (2001) can be used to obtain a linear inequality based on the dimensionless equivalent

melting point Tm,e = exp (Tm/Tm,0), where Tm,0 = 147.450 K is the reference value used in the

GC method of Marrero and Gani (2001):

Tm,e =
∑
i∈G

niTm,i ≤ exp (Tm,max/Tm,0) . (72)

An analogous method is used to constrain the dimensionless equivalent boiling point Tb,e =

exp (Tb/Tb,0), where Tb,0 = 222.543 K is the reference value used in the GC method of Marrero

and Gani (2001):

Tb,e =
∑
i∈G

niTb,i ≥ exp (Tb,min/Tb,0) . (73)

The contributions Tm,i and Tb,i are presented in Supplementary Information Table 1.

4. Case study - A Menschutkin reaction

4.1. Problem specification

Menschutkin reactions belong to the important class of nucleophilic substitution reactions,

specifically SN2 reactions, and occur when a tertiary amine reacts with a halogenated com-

pound to form a quaternary ammonium salt. Menschutkin reactions have been shown to exhibit

significant solvent effects (Menschutkin, 1890a,b; Truong et al., 1997; Amovilli et al., 1998;

Castejon and Wiberg, 1999; Struebing et al., 2013). The Menschutkin reaction of pyridine (C1)
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and phenacyl bromide (C2), which is illustrated in Figure 2, is chosen to demonstrate the pro-

posed design methodology. It has been studied both experimentally (Barnard and Smith, 1981;

Ganase, 2015) and computationally (Struebing et al., 2013); given the breadth of information

available on this reaction, it provides an ideal test case for methodological developments. Here,

the reaction is investigated at standard pressure (1 atm) and at a reaction temperature of 298 K.

At these conditions, pyridine (reactant C1) is a liquid but phenacyl bromide (reactant C2) is a

solid.

N

pyridine(C1)

+

O

Br

phenacyl bromide (C2)

solvent (C3)−−−−−−−→

O

N+

Br−

phenacyl pyridinium bromide salt

Figure 2: The chosen Menschutkin reaction: pyridine and phenacyl bromide react to form phenacyl pyridinium
bromide salt (Barnard and Smith, 1981).

The rate of Menschutkin reactions has been shown to follow second-order kinetics (Pearson

et al., 1952; Halvorsen and Songstad, 1978; Forster and Laird, 1982; Hwang et al., 1983; Ganase,

2015). Hence, it is defined by the following equation:

r = k · [C1] · [C2]. (74)

In the formulation of the CAMD problem in Step 4 of the QM-CAMD approach (Figure 1),

the rate constant is calculated using the solvatochromic equation, Equation (7). The QM

calculations required to parameterize the solvatochromic equation are performed using the

M05-2X/6-31G(d) level of theory and density functional together with the SMD continuum

solvation model (Marenich et al., 2009), as implemented in Gaussian 09 (Frisch et al.); this

approach has been shown to provide good agreement with experimental values (Struebing et al.,

2013). To compute the concentrations of the reactants in the reaction mixture (cf Equations (35)

and (36)), the liquid molar volume of the solvent is calculated by GC (Constantinou et al., 1995).

However, pyridine is too small to be treated accurately by group contribution techniques, and

the experimental value Vm,C1 = 0.08048 L ·mol−1 is used (Liessmann et al., 1995).

The melting temperature Tm,C2 and the enthalpy of fusion ∆Hm,C2 of phenacyl bromide,
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required to calculate the solubility of phenacyl bromide via Equation (39), are obtained using the

third-order group contribution method proposed by Marrero and Gani (2001). No experimental

data are available for the enthalpy of fusion. The predicted normal melting temperature of

Tm,C2 = 320.53 K is in a good agreement with experimental measurements, which vary between

320.15 K and 324.15 K (Chemspider). The term on the right-hand side of Equation (39) depends

only on the properties of the solute and on the reaction temperature. Here, this term is constant

since an isothermal reaction is assumed. To assess the suitability of the solubility model, the

solubility of phenacyl bromide in water was computed and found to be in good agreement with

experimental data (Römpp encyclopedia online - Version 3.5.).

To define the design problem fully, we specify all parameters relevant to the definition of the

design space and the constraints. The atom groups used are listed in Supplementary Information

Table 1. Groups marked with an asterisk are excluded from the design space due to reactivity

concerns, either due to the presence of double bonds (e.g., CH=CH) or to specific affinity for one

of the reactants (e.g., Br or CH2NH). A total of 33 atom groups is thus considered, including 3

molecular groups (acetonitrile, chloroform and nitromethane).

Given that molecular groups are considered, the minimum number of groups must be given

as nG,min = 1. The maximum number of group is limited to nG,max = 7. This reduces the

complexity of the solvents that may be designed and eliminates the bicyclic structure. Based

on this choice, we set K = 3, so that the number of groups of any given type i is constrained to

a maximum of 7, i.e., nUG,a = 7, nGb,max = 0, and nGm,max = 1.

In principle, the melting point maximum and boiling point minimum for the solvent can

be set to ensure a sufficiently large liquid range around 298 K by choosing values such that

Tm,max < 298 K and Tb,min > 298 K. However, to allow for uncertainty in the predictions of the

GC methods and avoid excluding potentially interesting solvents, the melting point upper bound

is set to 317 K and the boiling point lower bound is set to 292 K. Therefore, the dimensionless

equivalent values used in Equations (72) and (73) are Tm,max = 8.6 and Tb,min = 3.7, respectively.

4.2. Application of the QM-CAMD algorithm

To investigate the proposed QM-CAMD algorithm and formulation, several case studies

are considered in which the initial set of solvents, the design space and the constraints on the
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mole fractions of the reactants, xmax,eq and x∗C1 , are varied. The application of the algorithm

illustrated in Figure 1 is first described in detail by presenting the first iteration of one case study

step by step. The MINLP in Step 4 is solved using the BARON 15.9.22 solver (Tawarmalani

and Sahinidis, 2005) in GAMS 24.6.1 (GAMS Development Corporation, 2014).

4.2.1. Case A/Base case

First, the solvent design problem is specified for the base case, case A. The design space is

restricted by removing the building group OH due to inaccuracies in QM rate constant calcula-

tions of alcohols (Struebing et al., 2013). Furthermore, the upper bound on the solubility xmax,eq

and the mole fraction of pyridine x∗C1 are set as follows:

xmax,eq = x∗C1 = 0.25. (75)

The choice of 0.25 ensures that the solvent is always in excess and the impact of this value on

the solvents designed can readily be assessed by carrying out a sensitivity analysis.

An initial set of six common hydroxyl-free solvents is used, covering a large range of dielectric

constant values. The solvents and their respective dielectric constants are: toluene (ε = 2.38),

chlorobenzene (ε = 5.70), ethyl acetate (ε = 5.99), tetrahydrofuran (ε = 7.43), acetone (ε =

20.49) and acetonitrile (ε = 35.69) (Winget et al., 2010). To limit the number of QM calculations

the minimum number of solvents (six) is used.

In Step 2, the pure solvent properties (refractive index, Abraham’s hydrogen bond acid-

ity, Abraham’s hydrogen bacicity, macroscopic surface tension, dielectric constant, aromaticity

and electronegative halogenicity) required to determine the QM reaction rate constant, kTST
j ,

in each solvent j are computed using the GC techniques presented in Section 3.3 and in the

Supplementary Information. The energy and geometry of each reactant and of the transition-

state are then determined by considering the isolated molecule or activated complex surrounded

by the solvent of interest, as described via the SMD model. Furthermore, additional solvent

properties needed for the surrogate model (Abraham’s dipolarity/polarizability parameter, the

polarizability correction parameter and the cohesive energy density) are computed using the GC

techniques presented in Section 3.3. The predicted rate constants kTST
j , for all j, and the solvent

properties needed for the surrogate model are summarized in an illustration of the first steps of
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the algorithm in Table 1. It can be seen that for the chosen initial set of solvents, the reaction

rate constants vary over two orders of magnitude.

In Step 3, the parameters of the solvatochromic equation are determined by a linear regression

to the data computed for the initial solvent set. The resulting expression is

log kCAMD = −18.82− 87.31A+ 6.98B + 6.46S + 1.80δ + 10.33 δ
2
H

100 . (76)

Next, Equation (76) is incorporated into the CAMD problem which is solved in Step 4.

The resulting optimal solvent candidate contains 1× CH2NO2 and 1× I structural groups, i.e.

iodonitromethane, with a predicted rate constant of kCAMD = 2.013 · 1010 L ·mol−1 · s−1.

In Step 5, the convergence test is applied and since iodonitromethane has not been used

in the regression of the surrogate model, the solvent is added to the solvent set to update the

surrogate model. A second iteration is initiated and the algorithm returns to Step 2 as illustrated

in Table 1. Here, the rate constant in iodonitromethane as predicted by the QM model is

kTST = 3.700 · 10−3 L ·mol−1 · s−1, 13 orders of magnitude lower than the corresponding rate

constant obtained with the solvatochromic model, Equation (7). This large discrepancy is due

to the very low statistical significance of the surrogate model, since its parameters were regressed

based on only six data points.

As the algorithm proceeds until the convergence criterion is satisfied, the surrogate model is

updated after each iteration and becomes more and more reliable. In the last iteration, the best

solvent is determined by the CAMD approach to consist of 1×CH3NO2, i.e. nitromethane, with

a CAMD rate constant of kCAMD = 3.192 · 10−3 L ·mol−1 · s−1. The QM-derived rate constant

in nitromethane is kTST
CH3NO2 = 3.021 · 10−3 L ·mol−1 · s−1; the error between kCAMD and kTST

is of only 5.5 %, which illustrates the increased reliability of the surrogate model.

The solvent designed at each iteration and its performance metrics are presented in Table 2.

Furthermore, the ranked list of the five best solvents found, which is obtained by using integer

cuts at the final iteration, is also shown in Table 2. Since the MINLP model is solved to global

optimality, these are the five best solvents within the entire design space based on the surrogate

model at this final iteration. This may not correspond to the five best solvents according to the

QM model due to differences in the two models of reaction kinetics. The final optimal solvent

for the base case is nitromethane, although the QM-derived rate constant of iodonitromethane
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Table 1: Illustration of the first steps in the QM-CAMD algorithm of the base case.

Step 1: Define solvent problem and initial set
↓

Iteration 1; Step 2: Calculate kTST and solvent properties

Solvents kTST in L
mol·s A B S δ

δ2
H

100 in cal
cm3

Toluene 1.632E-05 0.000 0.151 0.516 1.0 0.760
Chlorobenzene 2.822E-04 0.000 0.000 0.631 1.0 0.910
Ethyl acetate 3.473E-04 0.000 0.475 0.574 0.0 0.808
Tetrahydrofuran 5.810E-04 0.000 0.480 0.520 0.0 0.860
Acetonitrile 2.342E-03 0.070 0.320 0.900 0.0 1.381
Acetone 1.544E-03 0.000 0.491 0.689 0.0 0.788

↓
Iteration 1; Step 3: Regress solvatochromic equation to data

log kCAMD = −18.82− 87.31A+ 6.98B + 6.46S + 1.80δ + 10.33 δ
2
H

100
↓

Iteration 1; Step 4: Identify optimal solvent candidate
Solvent: 1× CH2NO2, 1× I

↓
Iteration 1; Step 5: Convergence test → Fail

↓
Iteration 2; Step 2: Computing solvent properties, kTST and updating solvent set

Solvent n2
D A B γ in cal

mol·Å2 ε φ ψ

CH2INO2 2.162 0.000 0.321 74.122 22.620 0.000 0.000

→ kTST = 3.700E-03 L
mol·s

↓

Solvents kTST in L
mol·s A B S δ

δ2
H

100 in cal
cm3

...
...

...
...

...
...

...
Acetone 1.544E-03 0.000 0.491 0.689 0.0 0.788
CH2INO2 3.700E-03 0.000 0.321 1.278 0.5 1.718

...
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is higher than the QM rate constant of nitromethane. This cannot be attributed to a lower

solubility of phenacyl bromide in iodonitromethane as the mole fraction of phenacyl bromide at

the optimal solution is below the thermodynamic solubility limit, i.e., xC2 = xmax,eq. In fact,

phenacyl bromide is highly soluble in all the solvents tested by the algorithm. Nitromethane

leads to a higher reaction rate due to the higher reactant concentrations, cC1 and cC2 , that can

be achieved in nitromethane for given mole fractions, as result of the smaller liquid molar volume

of nitromethane relative to iodonitromethane. This reflects the fact that a reaction mixture with

a smaller liquid molar volume either requires a smaller reactor to yield the same productivity

or results in higher productivity in an existing reactor, than a reaction mixture with a higher

molar volume. The list of 5 solvents obtained with the final surrogate model (iteration 5 in

Table 2, solvents 5.1 to 5.5) is ranked in order of decreasing reaction rate as predicted by the

surrogate model. It can be seen that the reported reaction rate constants, computed with the

QM model, do not follow this order. For example, the QM-derived rate constant in nitroethane

is lower than the reaction rate in iodonitromethane and acetonitrile, although nitroethane is the

second best solvent identified by solving the CAMD problem. This uncertainty in the rankings

is caused by discrepancies between the two models.

This case study can be used to investigate the computational cost of the QM-CAMD approach

and the relative cost of different steps. The CPU time for the solution of one MINLP is 2.4

CPU hours on average on a single core of a dual 12 core Intel Xeon, 2.70GHz. The total

CPU time dedicated to Step 4 and Step 6 (generation of the final list of solvents using integer

cuts) for this case study is 12 CPU hours. On the other hand, the CPU time required for one

calculation of kTST is typically about 30 hours on a twin quad core Xeon 2.8Ghz. Given that

11 rate constant calculations are carried out during the course of the solution, QM calculations

require approximately 330 CPU hours in total. Although the kTST calculations are carried out

in parallel across 8 cores, it is clear that they dominate the CPU and real time costs. The direct

integration of these calculations in the CAMD problem formulation, which would in addition

require the calculation of the gradients of kTST with respect to the solvent properties, would thus

be prohibitively expensive. Instead, the proposed QM-CAMD approach makes the inclusion of

kinetics in solvent design computationally tractable through the use of a surrogate model.
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Table 2: Summary of results for case A/base case. The notation i.1, i.2, etc. denotes that integer cuts have been
used at iteration i.

Iter. Solvent xC1 xC2 cC1 cC2 kTST rTST
mol

L
mol

L
L

mol·s
mol
L·s

1 iodonitromethane 0.25 0.25 2.778 2.778 3.700E-03 2.855E-02
2 nitroethane 0.25 0.25 2.806 2.806 2.172E-03 1.710E-02
3 propanenitrile 0.25 0.25 2.815 2.815 1.731E-03 1.372E-02
4 nitromethane 0.25 0.25 3.127 3.127 3.021E-03 2.954E-02
5.1 nitromethane 0.25 0.25 3.127 3.127 3.021E-03 2.954E-02
5.2 nitroethane 0.25 0.25 2.806 2.806 2.172E-03 1.710E-02
5.3 iodonitromethane 0.25 0.25 2.778 2.778 3.700E-03 2.855E-02
5.4 acetonitrile 0.25 0.25 3.155 3.155 2.346E-03 2.335E-02
5.5 1-nitropropane 0.25 0.25 2.569 2.569 1.927E-03 1.271E-02

Case B/Inclusion of OH groups. In the second instance of the design problem, case B, the

constraint that the initial solvent set and the design space should not contain OH groups is

lifted to investigate its impact on the outcome of the design. The initial set now contains an

alcohol, ethanol (ε = 24.55 (Ritzoulis and Fidantsi, 2000)), instead of acetone. All other as-

pects of the problem are identical to Case A and the results are presented in Table 3 in the

same manner as Case A to facilitate their analysis. It is found that the solubility of phenacyl

bromide is not a limiting factor in solvent in this particular case, since in all solvents considered

the thermodynamic solubility is again greater than the upper bound of mole fraction for this

compound, xmax,eq = 0.25. Further, the impact of the density on the reaction rate is negligible

in this case due to the large differences between the QM-derived rate constants in the various

solvents. The optimal solvent candidate is found to comprise 1×CH2NO2 and 1×OH building

groups, i.e., nitromethanol. It is predicted to exhibit a significantly higher reaction rate com-

pared to other solvents. However, when checking for chemical stability and reactivity in Step 7

of the QM-CAMD algorithm, two of the final solvents, nitromethanol and hypoiodous, acid are

found to be unstable molecules. Consequently, the alcohol 2-nitroethanol is found to be the best

solvent that fulfils the requirement of chemical stability. Although alcohols appear to be very

promising solvents, the limited accuracy of the QM model used suggests further investigaton of

their suitability is needed. Nitromethane is once again identified as a viable alternative, as the

third possible solvent in Case B.
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Table 3: Summary of results for case B/no restriction to the initial set of solvents. The notation i.1, i.2, etc.
denotes that integer cuts have been used at iteration i.

Iter. Solvent xC1 xC2 cC1 cC2 kTST rTST
mol

L
mol

L
L

mol·s
mol
L·s

1 isohexane 0.25 0.25 2.113 2.113 1.157E-04 5.163E-04
2 nitromethanol∗ 0.25 0.25 3.173 3.173 9.009E-03 9.070E-02
3 acetic acid 0.25 0.25 2.998 2.998 1.238E-04 1.112E-03
4.1 nitromethanol∗ 0.25 0.25 3.173 3.173 9.009E-03 9.070E-02
4.2 2-nitroethanol 0.25 0.25 2.874 2.874 7.061E-03 5.831E-02
4.3 hypoiodous acid∗ 0.25 0.25 3.295 3.295 5.849E-03 6.350E-02
4.4 nitromethane 0.25 0.25 3.127 3.127 3.021E-03 2.954E-02
4.5 3-nitropropan-1-ol 0.25 0.25 2.626 2.626 5.864E-03 4.043E-02

Case C/Solubility limit. In Cases A and B, the solubility of the solid reactant, phenacyl bro-

mide, in the designed solvents was not found to be a limiting factor in maximizing the reaction

rate. Case C is formulated to study the impact of solubility limitations, by allowing a greater

proportion of reactants to be present in the mixture (up to 0.9 mole fraction in total), making

the predictions of the kinetic models less reliable. The objective of this case study is purely

methodological: it illustrates how the proposed mathematical formulation allows the solubility

limit to be taken into account; however, for this specific reaction, this means that the solvent

is no longer in excess and therefore that the results (the specific solvents designed) should be

treated with caution. The only differences from the base case are that xmax,eq is set to 0.8 and

the mole fraction of pyridine x∗C1 to 0.1. The same design space is used as in Case A (the OH

building group is not permitted to occur in the designed solvent), and the surrogate model is

regressed to the same initial set of solvents. The results are presented in Table 4 and include

the mole fraction of phenacyl bromide present in the mixture, as calculated via Equation (45).

For all solvents tested by the algorithm, the solubility of phenacyl bromide at 298 K is less

than 0.8 so that the solubility constraint is active, thereby demonstrating the effectiveness of

the proposed formulation. The mole fraction is predicted to be approximately 0.57 in most

solvents, expect in nitromethane which yields a higher mole fraction, xC2 = 0.62. As a result, a

higher reaction rate is obtained in nitromethane than in 1,1-dichloro-3-nitropropane, although

1,1-dichloro-3-nitropropane is found to have a higher rate constant than nitromethane. Overall,

halogenated and nitro compounds appear to give good performance, but we note that it is not
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known whether excess phenacyl bromide has an impact on the reaction rate constant.

Table 4: Summary of results for case C/base case with xeq,max = 0.8. The notation i.1, i.2, etc. denotes that
integer cuts have been used at iteration i.

Iter. Solvent xC1 xC2 cC1 cC2 kTST rTST
mol

L
mol

L
L

mol·s
mol
L·s

1 iodonitromethane 0.1 0.573 0.928 5.319 3.700E-03 1.826E-02
2 2-methyl-1-nitropropane 0.1 0.545 0.852 4.647 1.659E-03 6.572E-03
3 nitroethane 0.1 0.568 0.936 5.311 2.172E-03 1.080E-02
4 1,1-dichloro-2-nitroethane 0.1 0.568 0.879 4.990 4.235E-03 1.858E-02
5.1 1,1-dichloro-2-nitroethane 0.1 0.568 0.879 4.990 4.235E-03 1.858E-02
5.2 1,1-dichloro-3-nitropropane 0.1 0.565 0.839 4.743 3.754E-03 1.494E-02
5.3 nitromethane 0.1 0.620 0.954 5.910 3.021E-03 1.703E-02
5.4 nitroethane 0.1 0.568 0.936 5.311 2.172E-03 1.080E-02
5.5 iodonitromethane 0.1 0.573 0.928 5.319 3.700E-03 1.826E-02

A comparison of the results of the three cases indicates that nitromethane is a promising

solvent for this reaction: it is systematically selected amongst the top five candidates. Its

performance has been verified experimentally (Struebing et al., 2013). There is consistency in

the results of the three case studies, with nitrogen-containing compounds appearing repeatedly,

together with solvents containing iodine or chlorine. The results indicate that few iterations are

required to converge to a set of high-performance solvents, so that only about 10 calculations

of the rate constant with the QM and SMD model are needed to investigate the much larger

design space. Considering the much higher cost of QM calculations relative to CAMD solution,

this represents a significant time savings.

5. Concluding remarks

The QM-CAMD methodology for the design of optimal solvents for reactions (Struebing

et al., 2013) has been extended to take into account the impact of solid reactant solubility and

solvent density on solvent choice. The formulation of an MINLP that embeds these consid-

erations has been presented in detail. The solubility of solid reactants is modelled by making

appropriate assumptions on the solid phase and modelling the non-ideality of the liquid phase via

the UNIFAC group contribution method. The concentrations of the various compounds in the

reaction mixture are obtained by assuming a negligible volume of mixing. Overall, this approach

allows the use of the reaction rate as an objective, instead of the reaction rate constant. All
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required solvent properties are predicted by GC techniques, while QM calculations embedding

a continuum solvation model are used to compute rate constants in various solvents, making

the approach independent of any experimental data and widely applicable. A surrogate model

for the QM calculations, in the form of the linear solvatochromic equation, is embedded in the

MINLP to ensure computational tractability. The application of the proposed methodology to a

SN2-Menschutkin reaction, a classic reaction for the study of solvent effects, shows that it leads

to the identification, from a large design space, of promising solvents that enhance the reaction

rate. In spite of the simplicity of the surrogate model and of the uncertainty inherent in the

group contribution techniques used, the results are found to be in good agreement with exper-

imental data (Struebing et al., 2013) and to provide a first-principles guide to solvent design.

Furthermore, the case study demonstrates the strong interplay between kinetics, other solvent

properties and thermodynamic factors that affect process performance, such as solid reactant

solubility and solvent density.

The proposed QM-CAMD framework offers the possibility to add further constraints that

are also important in solvent selection. For instance, in the case of competing reactions, selec-

tivity can be accounted for by computing the rate of each reaction in different solvents, with a

corresponding surrogate model per reaction. The solubility of liquid reactants should also be

considered, and this could be achieved in the first instance by embedding miscibility constraints

for each reactant with the solvent, as proposed by Gani et al. (1991). Broader process design

aspects can also be readily integrated within the proposed framework, including economic and

environmental criteria. Despite the use of global optimisation algorithm to solve the nonconvex

MINLP, the approach as presented may not always identify globally optimal solvents due to the

discrepancies between the surrogate and detailed models of reaction kinetics. Although the sur-

rogate model has the benefit of being linear and simple to derive, its accuracy is limited because

of the small data set used in its regression and because of the inherently nonlinear relationship

between rate constant and solvent molecular structure. The diversity of the high-performance

solvents identified by the QM-CAMD approach could thus be further enhanced by adopting a

more accurate surrogate model, offering an interesting avenue for further development of the

methodology. As it stands, the approach provides a valuable framework to link reactor design

and solvent design prior to any experimental investigations.
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of solvent choice on the optimisation of a reaction-separation operation: application to a

Beckmann rearrangement reaction. Separation and Purification Technology 34, 273–281.

Evans, M.G., Polanyi, M., 1935. Some applications of the transition state method to the cal-

culation of reaction velocities, especially in solution. Transactions of the Faraday Society 31,

875–894.

Eyring, H., 1935. The activated complex in chemical reactions. The Journal of Chemical Physics

3, 107–115.
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