5,827 research outputs found
Combining gravity with the forces of the standard model on a cosmological scale
We prove the existence of a spectral resolution of the Wheeler-DeWitt
equation when the underlying spacetime is a Friedman universe with flat spatial
slices and where the matter fields are comprised of the strong interaction,
with \SU(3) replaced by a general \SU(n), , and the electro-weak
interaction. The wave functions are maps from to a subspace of the
antisymmetric Fock space, and one noteworthy result is that, whenever the
electro-weak interaction is involved, the image of an eigenfunction is in
general not one dimensional, i.e., in general it makes no sense specifying a
fermion and looking for an eigenfunction the range of which is contained in the
one dimensional vector space spanned by the fermion.Comment: 53 pages, v6: some typos correcte
Critical properties of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model in the presence of a uniform field
In the presence of a uniform field the one-dimensional spin-
antiferromagnetic Heisenberg model develops zero frequency excitations at
field-dependent 'soft mode' momenta. We determine three types of critical
quantities, which we extract from the finite-size dependence of the lowest
excitation energies, the singularities in the static structure factors and the
infrared singularities in the dynamical structure factors at the soft mode
momenta. We also compare our results with the predictions of conformal field
theory.Comment: 12 pages, REVTEX, 7 figures, submitted to Physical Review
Visualization of Endothelial Actin Cytoskeleton in the Mouse Retina
Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation
Construction of an isotropic cellular automaton for a reaction-diffusion equation by means of a random walk
We propose a new method to construct an isotropic cellular automaton
corresponding to a reaction-diffusion equation. The method consists of
replacing the diffusion term and the reaction term of the reaction-diffusion
equation with a random walk of microscopic particles and a discrete vector
field which defines the time evolution of the particles. The cellular automaton
thus obtained can retain isotropy and therefore reproduces the patterns found
in the numerical solutions of the reaction-diffusion equation. As a specific
example, we apply the method to the Belousov-Zhabotinsky reaction in excitable
media
Characterization of zinc selenide single crystals
ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples
The Starburst Nature of Lyman-Break Galaxies: Testing UV Extinction with X-rays
We derive the bolometric to X-ray correlation for a local sample of normal
and starburst galaxies and use it, in combination with several UV reddening
schemes, to predict the 2--8 keV X-ray luminosity for a sample of 24
Lyman-break galaxies in the HDF/CDF-N. We find that the mean X-ray luminosity,
as predicted from the Meurer UV reddening relation for starburst galaxies,
agrees extremely well with the Brandt stacking analysis. This provides
additional evidence that Lyman-break galaxies can be considered as scaled-up
local starbursts and that the locally derived starburst UV reddening relation
may be a reasonable tool for estimating the UV extinction at high redshift. Our
analysis shows that the Lyman-break sample can not have far-IR to far-UV flux
ratios similar to nearby ULIGs, as this would predict a mean X-ray luminosity
100 times larger than observed, as well as far-IR luminosities large enough to
be detected in the sub-mm. We calculate the UV reddening expected from the
Calzetti effective starburst attenuation curve and the radiative transfer
models of Witt & Gordon for low metallicity dust in a shell geometry with
homogeneous or clumpy dust distributions and find that all are consistent with
the observed X-ray emission. Finally, we show that the mean X-ray luminosity of
the sample would be under predicted by a factor of 6 if the the far-UV is
unattenuated by dust.Comment: 7 pages, 3 figures. Accepted for publication in A
Tissue guidance without filopodia
Filopodia are highly dynamic, rod-like protrusions that are found in abundance at the leading edge of migrating cells such as endothelial tip cells and at axonal growth cones of developing neurons. One proposed function of filopodia is that of an environmental probe, which serves to sense guidance cues during neuronal pathfinding and blood vessel patterning. However, recent studies show that tissue guidance occurs unhindered in the absence of filopodia, suggesting a dispensability of filopodia in this process. Here, we discuss evidence that support as well as dispute the role of filopodia in guiding the formation of stereotypic neuronal and blood vessel patterns
- …