201 research outputs found

    Fundamentals of interface phenomena in advanced bulk nanoscale materials

    Get PDF
    The review is devoted to a study of interface phenomena influencing advanced properties of nanoscale materials processed by means of severe plastic deformation, high-energy ball milling and their combinations. Interface phenomena include processes of interface defect structure relaxation from a highly nonequilibrium state to an equilibrium condition, grain boundary phase transformations and enhanced grain boundary and triple junction diffusivity. On the basis of an experimental investigation, a theoretical description of the key interfacial phenomena controlling the functional properties of advanced bulk nanoscale materials has been conducted. An interface defect structure investigation has been performed by TEM, high-resolution x-ray diffraction, atomic simulation and modeling. The problem of a transition from highly non-equilibrium state to an equilibrium one, which seems to be responsible for low thermostability of nanoscale materials, was studied. Also enhanced grain boundary diffusivity is addressed. Structure recovery and dislocation emission from grain boundaries in nanocrystalline materials have been investigated by analytical methods and modeling

    The maximum modulus of a trigonometric trinomial

    Full text link
    Let Lambda be a set of three integers and let C_Lambda be the space of 2pi-periodic functions with spectrum in Lambda endowed with the maximum modulus norm. We isolate the maximum modulus points x of trigonometric trinomials T in C_Lambda and prove that x is unique unless |T| has an axis of symmetry. This permits to compute the exposed and the extreme points of the unit ball of C_Lambda, to describe how the maximum modulus of T varies with respect to the arguments of its Fourier coefficients and to compute the norm of unimodular relative Fourier multipliers on C_Lambda. We obtain in particular the Sidon constant of Lambda

    Thermal relaxation of magnetic clusters in amorphous Hf_{57}Fe_{43} alloy

    Full text link
    The magnetization processes in binary magnetic/nonmagnetic amorphous alloy Hf_{57}Fe_{43} are investigated by the detailed measurements of magnetic hysteresis loops, temperature dependence of magnetization, relaxation of magnetization and magnetic ac susceptibility, including a nonlinear term. Blocking of magnetic moments at lower temperatures is accompanied with the slow relaxation of magnetization and magnetic hysteresis loops. All of the observed properties are explained with the superparamagnetic behaviour of the single domain magnetic clusters inside the nonmagnetic host, their blocking by the anisotropy barriers and thermal fluctuation over the barriers accompanied by relaxation of magnetization. From magnetic viscosity analysis based on thermal relaxation over the anisotropy barriers it is found out that magnetic clusters occupy the characteristic volume from 25 up to 200 nm3 . The validity of the superparamagnetic model of Hf_{57}Fe_{43} is based on the concentration of iron in the Hf_{100-x}Fe_{43} system that is just below the threshold for the long range magnetic ordering. This work throws more light on magnetic behaviour of other amorphous alloys, too

    Fractional recurrence in discrete-time quantum walk

    Full text link
    Quantum recurrence theorem holds for quantum systems with discrete energy eigenvalues and fails to hold in general for systems with continuous energy. We show that during quantum walk process dominated by interference of amplitude corresponding to different paths fail to satisfy the complete quantum recurrence theorem. Due to the revival of the fractional wave packet, a fractional recurrence characterized using quantum P\'olya number can be seen.Comment: 10 pages, 11 figure : Accepted to appear in Central European Journal of Physic

    The maximum of the local time of a diffusion process in a drifted Brownian potential

    Full text link
    We consider a one-dimensional diffusion process XX in a (−Îș/2)(-\kappa/2)-drifted Brownian potential for Îș≠0\kappa\neq 0. We are interested in the maximum of its local time, and study its almost sure asymptotic behaviour, which is proved to be different from the behaviour of the maximum local time of the transient random walk in random environment. We also obtain the convergence in law of the maximum local time of XX under the annealed law after suitable renormalization when Îș≄1\kappa \geq 1. Moreover, we characterize all the upper and lower classes for the hitting times of XX, in the sense of Paul L\'evy, and provide laws of the iterated logarithm for the diffusion XX itself. To this aim, we use annealed technics.Comment: 38 pages, new version, merged with hal-00013040 (arXiv:math/0511053), with some additional result

    Finite time and asymptotic behaviour of the maximal excursion of a random walk

    Full text link
    We evaluate the limit distribution of the maximal excursion of a random walk in any dimension for homogeneous environments and for self-similar supports under the assumption of spherical symmetry. This distribution is obtained in closed form and is an approximation of the exact distribution comparable to that obtained by real space renormalization methods. Then we focus on the early time behaviour of this quantity. The instantaneous diffusion exponent Îœn\nu_n exhibits a systematic overshooting of the long time exponent. Exact results are obtained in one dimension up to third order in n−1/2n^{-1/2}. In two dimensions, on a regular lattice and on the Sierpi\'nski gasket we find numerically that the analytic scaling Îœn≃Μ+An−Μ\nu_n \simeq \nu+A n^{-\nu} holds.Comment: 9 pages, 4 figures, accepted J. Phys.

    The Gifted and Gifted Education in Hungary

    Get PDF
    The real challenge is to see value that is not yet in its true form. Becoming gifted is a process, during which characteristics of giftedness are present throughout, but not necessarily in a form perceptible or acceptable to the environment. Giftedness does not hide itself, only to the extent that the environment believes it hidden. Perception defines the pattern that manifests itself. The beginning of the 20th century is a success story of Hungarian gifted education. Outstanding teachers and their students have reached outstanding achievements through gifted education linked to everyday education. Their methods and ideas are durable, and are therefore worth recalling
    • 

    corecore