302 research outputs found

    Comparison of experimental and numerical sloshing loads in partially filled tanks

    Get PDF
    Sloshing phenomenon consists in the movement of liquids inside partially filled tanks, whichgenerates dynamic loads on the tank structure. Resulting impact pressures are of great importance in assessingstructural strength, and their correct evaluation still represents a challenge for the designer due to the highnonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of airtrapping. In the present paper a set of two-dimensional cases for which experimental results are available areconsidered to assess merits and shortcomings of different numerical methods for sloshing evaluation, namely twocommercial RANS solvers (FLOW-3D and LS-DYNA), and two own developed methods (Smoothed ParticleHydrodynamics and RANS). Impact pressures at different critical locations and global moment induced by watermotion for a partially filled tank with rectangular section having a rolling motion have been evaluated and resultsare compared with experiments

    Plant infection by two different viruses induce contrasting changes of vectors fitness and behavior

    Get PDF
    Abstract Insect-vectored plant viruses can induce changes in plant phenotypes, thus influencing plant?vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e., circulative vs. noncirculative). This indirect vector manipulation requires host?virus?vector coevolution and would thus be effective solely in very specific plant?virus?vector species associations. Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency. In anintegrative study, we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV) or the circulative Turnip yellows virus (TuYV) on the host-plant colonization of two aphid species differing in their virus transmission efficiency: the polyphagous Myzus persicae, efficient vector of both viruses, and the Brassicaceae specialist Brevicoryne brassicae, poor vector of TuYV and efficient vector of CaMV. Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e., decreased phloem sap ingestion) and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition. In addition, virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV, that is, enhanced feeding behavior and performances, were favorable to their acquisition and further dispersal. Altogether, this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses. Our results also reinforce the idea that vector manipulation requires coevolution between plant, virus and vector

    Depercolation of aggregates upon polymer grafting in simplified industrial nanocomposites studied with dielectric spectroscopy

    Get PDF
    The dynamics of polymer and filler in simplified industrial silica-styrene-butadiene nanocomposites (silica Zeosil 1165 MP, volume fraction 0-21%v) have been studied with broadband dielectric spectroscopy (BDS) and nuclear magnetic resonance (NMR). The fraction of graftable matrix chains was varied from 0 to 100%D3. The introduction of silica nanoparticles is shown to leave the segmental relaxation unaffected, an observation confirmed by the measurement of only a thin (some Angstroms thick) immobilized layer by NMR. The low-frequency measurements are resolved in two distinct dielectric Maxwell-Wagner-Sillars (MWS) processes of different behavior with respect to changes of large-scale silica structures induced by variations of filler fraction and grafting. It is found that increasing grafting leaves the first MWS-process unaffected, while it decreases the strength of the (slower) second MWS by about a decade. At constant silica volume fraction, this indicates depercolation of the filler, thereby providing a microscopic explanation of the evolution of rheological reinforcement. The sensitivity to large-scale reorganizations together with a characterization of local polymer dynamics provides insight over many length- and time-scales into structure and dynamics of nanocomposites, and thus the physical origin of the reinforcement effect.We are thankful for a “Chercheur d'Avenir” grant by the Languedoc-Roussillon region (J.O.) and Ph.D. funding “CIFRE” by Michelin (G.P.B.). The authors acknowledge financial support from the European Commission under the Seventh Framework Program by means of the grant agreement for the Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure (ESMI).Peer Reviewe

    Dynamique des systèmes agraires : la dimension économique

    Get PDF
    Le 4e séminaire "Dynamique des systèmes agraires" qui s'est déroulé pendant l'année 1987/1988, vise à éclairer le rôle des déterminants économiques et les mécanismes de fonctionnement d'ensemble de la dynamique des systèmes agraires. Les auteurs, économistes et géographes, appuient leurs réflexions sur des études de cas qui ont pour cadre, l'Afrique de l'Ouest, Madagascar et le Mexique

    Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis

    Get PDF
    Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFa. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology

    Kaposi's Sarcoma-Associated Herpesvirus K7 Induces Viral G Protein-Coupled Receptor Degradation and Reduces Its Tumorigenicity

    Get PDF
    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome encodes a G protein-coupled receptor (vGPCR). vGPCR is a ligand-independent, constitutively active signaling molecule that promotes cell growth and proliferation; however, it is not clear how vGPCR is negatively regulated. We report here that the KSHV K7 small membrane protein interacts with vGPCR and induces its degradation, thereby dampening vGPCR signaling. K7 interaction with vGPCR is readily detected in transiently transfected human cells. Mutational analyses reveal that the K7 transmembrane domain is necessary and sufficient for this interaction. Biochemical and confocal microscopy studies indicate that K7 retains vGPCR in the endoplasmic reticulum (ER) and induces vGPCR proteasomeal degradation. Indeed, the knockdown of K7 by shRNA-mediated silencing increases vGPCR protein expression in BCBL-1 cells that are induced for KSHV lytic replication. Interestingly, K7 expression significantly reduces vGPCR tumorigenicity in nude mice. These findings define a viral factor that negatively regulates vGPCR protein expression and reveal a post-translational event that modulates GPCR-dependent transformation and tumorigenicity

    The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design.

    Get PDF
    The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases

    Characterization of the Endothelial Cell Cytoskeleton following HLA Class I Ligation

    Get PDF
    Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood.The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin.Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types as a method for uncovering novel regulators of cytoskeleton changes
    corecore