1,842 research outputs found

    Multifunction MMIC For Miniaturized Solid State Switch Matrix

    Get PDF
    This paper describes a new multifunction MMIC expressly designed for a reconfiguration matrix equipment.This MMIC has been developed using a standard PHEMT process and includes two switches,a totally switchable-off amplifier and a temperature compensation circuit.The complete circuit has also been designed to interface a standard CMOS control level. Performed simulations and obtained results demonstrate the effectiveness of this approach in reaching compactness and reliability of satellite equipment

    Interplay among spin, orbital effects and localization in a GaAs two-dimensional electron gas in a strong in-plane magnetic field

    Full text link
    The magnetoresistance of a low carrier density, disordered GaAs based two-dimensional (2D) electron gas has been measured in parallel magnetic fields up to 32 T. The feature in the resistance associated with the complete spin polarization of the carriers shifts down by more than 20 T as the electron density is reduced, consistent with recent theories taking into account the enhancement of the electron-electron interactions at low densities. Nevertheless, the magnetic field for complete polarization, Bp, remains 2-3 times smaller than predicted for a disorder free system. We show, in particular by studying the temperature dependance of Bp to probe the effective size of the Fermi sea, that localization plays an important role in determining the spin polarization of a 2D electron gas.Comment: Published in the Physical Review

    Effects of anisotropy in a nonlinear crystal for squeezed vacuum generation

    Full text link
    Squeezed vacuum (SV) can be obtained by an optical parametric amplifier (OPA) with the quantum vacuum state at the input. We are interested in a degenerate type-I OPA based on parametric down-conversion (PDC) where due to phase matching requirements, an extraordinary polarized pump must impinge onto a birefringent crystal with a large \chi(2) nonlinearity. As a consequence of the optical anisotropy of the medium, the direction of propagation of the pump wavevector does not coincide with the direction of propagation of its energy, an effect known as transverse walk-off. For certain pump sizes and crystal lengths, the transverse walk-off has a strong influence on the spatial spectrum of the generated radiation, which in turn affects the outcome of any experiment in which this radiation is employed. In this work we propose a method that reduces the distortions of the two-photon amplitude (TPA) of the states considered, by using at least two consecutive crystals instead of one. We show that after anisotropy compensation the TPA becomes symmetric, allowing for a simple Schmidt expansion, a procedure that in practice requires states that come from experimental systems free of anisotropy effects

    Coherent Pion Production by Neutrinos

    Full text link
    I concentrate in this article on the reaction--coherent pion production by neutrinos incident on nuclei. A special effort is made in order to describe the approximations entering the calculation. I conclude that the reaction is well understood and with appropriate data for hadronic reactions is can be computed for low and high energies. Because of shortage of space I omitted the resonance analysis, which is described in articles with my collaborators.Comment: 4 pages. Proceedings of Conf. to be published by APS-Proceeding

    Tuning Energy Relaxation along Quantum Hall Channels

    Full text link
    The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at filling factor 2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at filling factor 2, informing us in particular that those within the outer edge channel are negligible.Comment: 8 pages including supplementary materia

    Noise dephasing in the edge states of the Integer Quantum Hall regime

    Full text link
    An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time Ď„Ď•(T)\tau_\phi(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure
    • …
    corecore