603 research outputs found
Longevity of supersymmetric flat directions
We examine the fate of supersymmetric flat directions. We argue that the
non-perturbative decay of the flat direction via preheating is an unlikely
event. In order to address this issue, first we identify the physical degrees
of freedom and their masses in presence of a large flat direction VEV (Vacuum
Expectation Value). We explicitly show that the (complex) flat direction and
its fermionic partner are the only light {\it physical} fields in the spectrum.
If the flat direction VEV is much larger than the weak scale, and it has a
rotational motion, there will be no resonant particle production at all. The
case of multiple flat directions is more involved. We illustrate that in many
cases of physical interest, the situation becomes effectively the same as that
of a single flat direction, or collection of independent single directions. In
such cases preheating is not relevant. In an absence of a fast non-perturbative
decay, the flat direction survives long enough to affect thermalization in
supersymmetric models as described in hep-ph/0505050 and hep-ph/0512227. It can
also ``terminate'' an early stage of non-perturbative inflaton decay as
discussed in hep-ph/0603244.Comment: 9 revtex pages, v3: expanded discussion on two flat directions, minor
modifications, conclusions unchange
Inflection point inflation within supersymmetry
We propose to address the fine tuning problem of inflection point inflation
by the addition of extra vacuum energy that is present during inflation but
disappears afterwards. We show that in such a case, the required amount of fine
tuning is greatly reduced. We suggest that the extra vacuum energy can be
associated with an earlier phase transition and provide a simple model, based
on extending the SM gauge group to SU(3)_C \times SU(2)_L\times U(1)_Y\times
U(1)_{B-L}, where the Higgs field of U(1)_{B-L} is in a false vacuum during
inflation. In this case, there is virtually no fine tuning of the soft SUSY
breaking parameters of the flat direction which serves as the inflaton.
However, the absence of radiative corrections which would spoil the flatness of
the inflaton potential requires that the U(1)_{B-L} gauge coupling should be
small with g_{B-L}\leq 10^{-4}.Comment: 6 pages, 1 figur
A-term inflation and the smallness of the neutrino masses
The smallness of the neutrino masses may be related to inflation. The minimal
supersymmetric Standard Model (MSSM) with small Dirac neutrino masses already
has all the necessary ingredients for a successful inflation. In this model the
inflaton is a gauge-invariant combination of the right-handed sneutrino, the
slepton, and the Higgs field, which generate a flat direction suitable for
inflation if the Yukawa coupling is small enough. In a class of models, the
observed microwave background anisotropy and the tilted power spectrum are
related to the neutrino masses.Comment: 13 pages, 1 figure, uses JHEP3.cls, minor modifications, final
version accepted for publication in JCA
Identifying the curvaton within MSSM
We consider inflaton couplings to MSSM flat directions and the thermalization
of the inflaton decay products, taking into account gauge symmetry breaking due
to flat direction condensates. We then search for a suitable curvaton candidate
among the flat directions, requiring an early thermally induced start for the
flat direction oscillations to facilitate the necessary curvaton energy density
dominance. We demonstrate that the supersymmetry breaking -term is crucial
for achieving a successful curvaton scenario. Among the many possible
candidates, we identify the flat direction as a viable MSSM
curvaton.Comment: 9 pages. Discussion on the evaporation of condensate added, final
version published in JCA
Inflation from IIB Superstrings with Fluxes
We study the conditions needed to have an early epoch of inflationary
expansion with a potential coming from IIB superstring theory with fluxes
involving two moduli fields. The phenomenology of this potential is different
from the usual hybrid inflation scenario and we analize the possibility that
the system of field equations undergo a period of inflation in three different
regimes with the dynamics modified by a Randall-Sundrum II term in the
Friedmann equation. We find that the system can produce inflation and due to
the modification of the dynamics, a period of accelerated contraction can
follow or preceed this inflationary stage depending on the sign of one of the
parameters of the potential. We discuss on the viability of this model in a
cosmological context.Comment: 10 pages, 6 figure
Inflection point inflation: WMAP constraints and a solution to the fine-tuning problem
We consider observational constraints and fine-tuning issues in a
renormalizable model of inflection point inflation, with two independent
parameters. We derive constraints on the parameter space of this model arising
from the WMAP 7-year power spectrum. It has previously been shown that it is
possible to successfully embed this potential in the MSSM. Unfortunately, to do
this requires severe fine-tuning. We address this issue by introducing a hybrid
field to dynamically uplift the potential with a subsequent smooth phase
transition to end inflation at the necessary point. Large parameter regions
exist where this drastically reduces the fine-tuning required without ruining
the viability of the model. A side effect of this mechanism is that it
increases the width of the slow-roll region of the potential, thus also
alleviating the problem of the fine-tuning of initial conditions. The MSSM
embedding we study has been previously shown to be able to explain the
smallness of the neutrino masses. The hybrid transition does not spoil this
feature as there exist parameter regions where the fine-tuning parameter is as
large as and the neutrino masses remain small.Comment: 12 pages, 2 figures, JCAP style. Version accepted for publication in
JCAP. Modifications made to improve readability, as requested by the referee;
results and conclusions unchanged. References update
Reheating and Supersymmetric Flat-Direction Baryogenesis
We re-examine Affleck-Dine baryo/leptogenesis from the oscillation of
condensates along flat directions of the supersymmetric standard model, which
attained large vevs at the end of inflationary epoque. The key observation is
that superpotential interactions couple the flat directions to other fields,
which acquire masses induced by the flat-direction vev that may be sufficiently
small for them to be kinematically accessible to inflaton decay. The resulting
plasma of inflaton decay products then may act on the flat directions via these
superpotential Yukawa couplings, inducing thermal masses and
supersymmetry-breaking A terms. In such cases the flat directions start their
oscillations at an earlier time than usually estimated. The oscillations are
also terminated earlier, due to evaporation of the flat direction condensate
produced by its interaction with the plasma of inflaton decay products. In
these cases we find that estimates for the resulting baryon/lepton asymmetry of
the universe are substantially altered. We identify scenarios for the Yukawa
couplings to the flat directions, and the order and mass scale of
higher-dimensional superpotential interactions that set the initial flat
direction vev, that might lead to acceptable baryo/leptogenesis.Comment: 26 pages, 9 Table
Baryogenesis and Late-Decaying Moduli
Late-decaying string moduli dilute the baryon asymmetry of the universe
created in any previous era. The reheat temperature for such moduli is below a
GeV, thus motivating baryogenesis at very low temperatures. We present an
extension of the minimal supersymmetric standard model with TeV-scale colored
fields that can yield the correct baryon asymmetry of the universe in this
context. Modulus decay, which reheats the universe at a temperature below GeV,
produces the visible sector fields and neutralino dark matter in non-thermal
fashion. We discuss various possibilities for baryogenesis from TeV scale
colored fields and show that they can generate an acceptable baryon asymmetry,
while being compatible with phenomenological constraints like
neutron-antineutron oscillation.Comment: 8 pages, 3 figure
Gauge invariant MSSM inflaton
We argue that all the necessary ingredients for successful inflation are
present in the flat directions of the Minimally Supersymmetric Standard Model.
We show that out of many gauge invariant combinations of squarks, sleptons and
Higgses, there are two directions, , and , which are
promising candidates for the inflaton. The model predicts more than
e-foldings with an inflationary scale of GeV,
provides a tilted spectrum with an amplitude of and a
negligible tensor perturbation. The temperature of the thermalized plasma could
be as low as ~TeV. Parts of the inflaton potential
can be determined independently of cosmology by future particle physics
experiments.Comment: 4 revtex pages, some references added, stabilization of moduli and
supergravity effects are discusse
On the complexity of the multiple stack TSP, kSTSP
The multiple Stack Travelling Salesman Problem, STSP, deals with the collect
and the deliverance of n commodities in two distinct cities. The two cities are
represented by means of two edge-valued graphs (G1,d2) and (G2,d2). During the
pick-up tour, the commodities are stored into a container whose rows are
subject to LIFO constraints. As a generalisation of standard TSP, the problem
obviously is NP-hard; nevertheless, one could wonder about what combinatorial
structure of STSP does the most impact its complexity: the arrangement of the
commodities into the container, or the tours themselves? The answer is not
clear. First, given a pair (T1,T2) of pick-up and delivery tours, it is
polynomial to decide whether these tours are or not compatible. Second, for a
given arrangement of the commodities into the k rows of the container, the
optimum pick-up and delivery tours w.r.t. this arrangement can be computed
within a time that is polynomial in n, but exponential in k. Finally, we
provide instances on which a tour that is optimum for one of three distances
d1, d2 or d1+d2 lead to solutions of STSP that are arbitrarily far to the
optimum STSP
- …