798 research outputs found

    Database Search Strategies for Proteomic Data Sets Generated by Electron Capture Dissociation Mass Spectrometry

    Get PDF
    Large data sets of electron capture dissociation (ECD) mass spectra from proteomic experiments are rich in information; however, extracting that information in an optimal manner is not straightforward. Protein database search engines currently available are designed for low resolution CID data, from which Fourier transform ion cyclotron resonance (FT-ICR) ECD data differs significantly. ECD mass spectra contain both z-prime and z-dot fragment ions (and c-prime and c-dot); ECD mass spectra contain abundant peaks derived from neutral losses from charge-reduced precursor ions; FT-ICR ECD spectra are acquired with a larger precursor m/z isolation window than their low-resolution CID counterparts. Here, we consider three distinct stages of postacquisition analysis: (1) processing of ECD mass spectra prior to the database search; (2) the database search step itself and (3) postsearch processing of results. We demonstrate that each of these steps has an effect on the number of peptides identified, with the postsearch processing of results having the largest effect. We compare two commonly used search engines: Mascot and OMSSA. Using an ECD data set of modest size (3341 mass spectra) from a complex sample (mouse whole cell lysate), we demonstrate that search results can be improved from 630 identifications (19% identification success rate) to 1643 identifications (49% identification success rate). We focus in particular on improving identification rates for doubly charged precursors, which are typically low for ECD fragmentation. We compare our presearch processing algorithm with a similar algorithm recently developed for electron transfer dissociation (ETD) data

    Precursor Ion Independent Algorithm for Top-Down Shotgun Proteomics

    Get PDF
    We present a precursor ion independent top-down algorithm (PIITA) for use in automated assignment of protein identifications from tandem mass spectra of whole proteins. To acquire the data, we utilize data-dependent acquisition to select protein precursor ions eluting from a C4-based HPLC column for collision induced dissociation in the linear ion trap of an LTQ-Orbitrap mass spectrometer. Gas-phase fractionation is used to increase the number of acquired tandem mass spectra, all of which are recorded in the Orbitrap mass analyzer. To identify proteins, the PIITA algorithm compares deconvoluted, deisotoped, observed tandem mass spectra to all possible theoretical tandem mass spectra for each protein in a genomic sequence database without regard for measured parent ion mass. Only after a protein is identified, is any difference in measured and theoretical precursor mass used to identify and locate post-translation modifications. We demonstrate the application of PIITA to data generated via our wet-lab approach on a Salmonella typhimurium outer membrane extract and compare these results to bottom-up analysis. From these data, we identify 154 proteins by top-down analysis, 73 of which were not identified in a parallel bottom-up analysis. We also identify 201 unique isoforms of these 154 proteins at a false discovery rate (FDR) of <1%

    Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application

    Get PDF
    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in ‘functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP

    Daptomycin resistance mechanisms in clinically derived Staphylococcus aureus strains assessed by a combined transcriptomics and proteomics approach

    Get PDF
    Objectives The development of daptomycin resistance in Staphylococcus aureus is associated with clinical treatment failures. The mechanism(s) of such resistance have not been clearly defined. Methods We studied an isogenic daptomycin-susceptible (DAPS) and daptomycin-resistant (DAPR) S. aureus strain pair (616; 701) from a patient with relapsing endocarditis during daptomycin treatment, using comparative transcriptomic and proteomic techniques. Results Minor differences in the genome content were found between strains by DNA hybridization. Transcriptomic analyses identified a number of genes differentially expressed in important functional categories: cell division; metabolism of bacterial envelopes; and global regulation. Of note, the DAPR isolate exhibited reduced expression of the major cell wall autolysis gene coincident with the up-regulation of genes involved in cell wall teichoic acid production. Using quantitative (q)RT-PCR on the gene cadre putatively involved in cationic peptide resistance, we formulated a putative regulatory network compatible with microarray data sets, mainly implicating bacterial envelopes. Of interest, qRT-PCR of this same gene cadre from two distinct isogenic DAPS/DAPR clinical strain pairs revealed evidence of other strain-dependent networks operative in the DAPR phenotype. Comparative proteomics of 616 versus 701 revealed a differential abundance of proteins in various functional categories, including cell wall-associated targets and biofilm formation proteins. Phenotypically, strains 616 and 701 showed major differences in their ability to develop bacterial biofilms in the presence of the antibacterial lipid, oleic acid. Conclusions Compatible with previous in vitro observations, in vivo-acquired DAPR in S. aureus is a complex, multistep phenomenon involving: (i) strain-dependent phenotypes; (ii) transcriptome adaptation; and (iii) modification of the lipid and protein contents of cellular envelope

    On Population Growth Near Protected Areas

    Get PDF
    Background: Protected areas are the first, and often only, line of defense in efforts to conserve biodiversity. They might be detrimental or beneficial to rural communities depending on how they alter economic opportunities and access to natural resources. As such, protected areas may attract or repel human settlement. Disproportionate increases in population growth near protected area boundaries may threaten their ability to conserve biodiversity. Methodology/Principal Findings: Using decadal population datasets, we analyze population growth across 45 countries and 304 protected areas. We find no evidence for population growth near protected areas to be greater than growth of rural areas in the same country. Furthermore, we argue that what growth does occur near protected areas likely results from a general expansion of nearby population centers. Conclusions/Significance: Our results contradict those from a recent study by Wittemyer et al., who claim overwhelming evidence for increased human population growth near protected areas. To understand the disagreement, we re-analyzed the protected areas in Wittemyer et al.’s paper. Their results are simply artifacts of mixing two incompatible datasets. Protected areas may experience unusual population pressures near their edges; indeed, individual case studies provid

    Efficacy and safety of upadacitinib in a randomized trial of patients with Crohn’s disease

    Get PDF
    Background & Aims: We evaluated the efficacy and safety of upadacitinib, an oral selective Janus kinase 1 inhibitor, in a randomized trial of patients with Crohn's disease (CD). Methods: We performed a double-blind, phase 2 trial in adults with moderate to severe CD and inadequate response or intolerance to immunosuppressants or tumor necrosis factor antagonists. Patients were randomly assigned (1:1:1:1:1:1) to groups given placebo; or 3 mg, 6 mg, 12 mg, or 24 mg upadacitinib twice daily; or 24 mg upadacitinib once daily and were evaluated by ileocolonoscopy at weeks 12 or 16 of the induction period. Patients who completed week 16 were re-randomized to a 36-week period of maintenance therapy with upadacitinib. The primary endpoints were clinical remission at week 16 and endoscopic remission at week 12 or 16 using the multiple comparison procedure and modeling and the Cochran-Mantel-Haenszel test, with a 2-sided level of 10%. Results: Among the 220 patients in the study, clinical remission was achieved by 13% of patients receiving 3 mg upadacitinib, 27% of patients receiving 6 mg upadacitinib (P < .1 vs placebo), 11% of patients receiving 12 mg upadacitinib, and 22% of patients receiving 24 mg upadacitinib twice daily, and by 14% of patients receiving 24 mg upadacitinib once daily, vs 11% of patients receiving placebo. Endoscopic remission was achieved by 10% (P < .1 vs placebo), 8%, 8% (P < .1 vs placebo), 22% (P < .01 vs placebo), and 14% (P < .05 vs placebo) of patients receiving upadacitinib, respectively, vs none of the patients receiving placebo. Endoscopic but not clinical remission increased with dose during the induction period. Efficacy was maintained for most endpoints through week 52. During the induction period, patients in the upadacitinib groups had higher incidences of infections and serious infections vs placebo. Patients in the twice-daily 12 mg and 24 mg upadacitinib groups had significant increases in total, high-density lipoprotein, and low-density lipoprotein cholesterol levels compared with patients in the placebo group. Conclusions: In a phase 2 trial of patients with CD, upadacitinib induced endoscopic remission in a significant proportion of patients compared with placebo. Upadacitinib's benefit/risk profile supports further development for treatment of CD. (Clinicaltrials.gov, Number: NCT02365649
    corecore