12 research outputs found

    Genetically engineered hairy root cultures of Hyoscyamus senecionis and H. muticus: ploidy as a promising parameter in the metabolic engineering of tropane alkaloids

    No full text
    Key Message: Tetraploidy improves overexpression of h6h and scopolamine production of H. muticus, while in H. senecionis, pmt overexpression and elicitation can be used as effective methods for increasing tropane alkaloids. Abstract: The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.Peer reviewed: YesNRC publication: Ye

    Regulation of Tropane Alkaloid Metabolism in Plants and Plant Cell Cultures

    No full text

    Structure and Function of Enzymes Involved in the Biosynthesis of Tropane Alkaloids

    No full text
    Tropane alkaloids are found in a scattered distribution among the angiosperm families including members within the Solanaceae, Erythroxylaceae, Convolvulaceae, and Brassicaceae. Recent studies regarding the origins of tropane production provide strong evidence for a polyphyletic origin, suggesting that novel enzymes from different gene families have been recruited during the course of flowering plant evolution. Tropane alkaloid biosynthesis is best documented on the molecular genetic and biochemical level from solanaceous species. Regardless of the system chosen, there are currently gaps in the knowledge of enzyme structure-function relationships and how they influence tropane alkaloid biosynthesis. Obtaining insights on structure-function relationships of tropane biosynthetic enzymes is critical to understanding regulation, turnover, and flux of metabolites through the pathway. In this review, we discuss the current state of knowledge regarding structure-function relationships of the known steps involved in tropane biosynthesis.This is a post-peer-review, pre-copyedit version of a chapter published as Kim, Neill, Benjamin Chavez, Charles Stewart, and John C. D’Auria. "Structure and Function of Enzymes Involved in the Biosynthesis of Tropane Alkaloids." In Tropane Alkaloids (Srivastava V., Mehrotra S., Mishra S., eds.) 2021: 21-50. The final authenticated version is available online at DOI: 10.1007/978-981-33-4535-5_2. Posted with permission.</p
    corecore