1,051 research outputs found
First and second order magnetic and structural transitions in BaFeCoAs
We present here high resolution magnetization measurements on high-quality
BaFeCoAs, 0x0.046 as-grown single crystals.
The results confirm the existence of a magnetic tricritical point in the
(,) plane at x0.022 and reveal the emergence of the
heat capacity anomaly associated with the onset of the structural transition at
x0.0064. We show that the samples with doping near x
do not show superconductivity, but rather superconductivity emerges at a
slightly higher cobalt doping, x0.0315Comment: 4 pages, 5 figure
Co atoms on BiSe revealing a coverage dependent spin reorientation transition
We investigate Co nanostructures on BiSe by means of scanning
tunneling microscopy and spectroscopy [STM/STS], X-ray absorption spectroscopy
[XAS], X-ray magnetic dichroism [XMCD] and calculations using the density
functional theory [DFT]. In the single adatom regime we find two different
adsorption sites by STM. Our calculations reveal these to be the fcc and hcp
hollow sites of the substrate. STS shows a pronounced peak for only one species
of the Co adatoms indicating different electronic properties of both types.
These are explained on the basis of our DFT calculations by different
hybridizations with the substrate. Using XMCD we find a coverage dependent spin
reorientation transition from easy-plane toward out-of-plane. We suggest
clustering to be the predominant cause for this observation.Comment: 10 pages, 4 figure
Intellectual capital in the knowledge-based economy
The considerations provided herein focus on intellectual capital as a concept that is gaining
increasing significance in the functioning of business and public entities in the era of the
knowledge-based economy. This paper aims to identify differences in the meaning and
measurement of intellectual capital in the private and public sectors. In the light of the growing
interest, triggered by marketisation, in the implementation of business solutions in the public sector,
this paper provides the characteristics and comparative analysis, including differences in the use, of
intellectual capital in both sectors. Regarding the public sector, the paper also points out potential
advantages that reveal themselves, in particular, in relation to a change in the existing public
administration officer and authority models that is based on the practice of business orientation
towards the needs of a client in the process of providing public services
The Aschenbach effect: unexpected topology changes in motion of particles and fluids orbiting rapidly rotating Kerr black holes
Newton's theory predicts that the velocity of free test particles on
circular orbits around a spherical gravity center is a decreasing function of
the orbital radius , . Only very recently, Aschenbach (A&A 425,
p. 1075 (2004)) has shown that, unexpectedly, the same is not true for
particles orbiting black holes: for Kerr black holes with the spin parameter
, the velocity has a positive radial gradient for geodesic, stable,
circular orbits in a small radial range close to the black hole horizon. We
show here that the {\em Aschenbach effect} occurs also for non-geodesic
circular orbits with constant specific angular momentum . In Newton's theory it is , with being the cylindrical
radius. The equivelocity surfaces coincide with the surfaces which,
of course, are just co-axial cylinders. It was previously known that in the
black hole case this simple topology changes because one of the ``cylinders''
self-crosses. We show here that the Aschenbach effect is connected to a second
topology change that for the tori occurs only for very highly
spinning black holes, .Comment: 9 pages, 7 figure
Quasar Selection Based on Photometric Variability
We develop a method for separating quasars from other variable point sources
using SDSS Stripe 82 light curve data for ~10,000 variable objects. To
statistically describe quasar variability, we use a damped random walk model
parametrized by a damping time scale, tau, and an asymptotic amplitude
(structure function), SF_inf. With the aid of an SDSS spectroscopically
confirmed quasar sample, we demonstrate that variability selection in typical
extragalactic fields with low stellar density can deliver complete samples with
reasonable purity (or efficiency, E). Compared to a selection method based
solely on the slope of the structure function, the inclusion of the tau
information boosts E from 60% to 75% while maintaining a highly complete sample
(98%) even in the absence of color information. For a completeness of C=90%, E
is boosted from 80% to 85%. Conversely, C improves from 90% to 97% while
maintaining E=80% when imposing a lower limit on tau. With the aid of color
selection, the purity can be further boosted to 96%, with C= 93%. Hence,
selection methods based on variability will play an important role in the
selection of quasars with data provided by upcoming large sky surveys, such as
Pan-STARRS and the Large Synoptic Survey Telescope (LSST). For a typical
(simulated) LSST cadence over 10 years and a photometric accuracy of 0.03 mag
(achieved at i~22), C is expected to be 88% for a simple sample selection
criterion of tau>100 days. In summary, given an adequate survey cadence,
photometric variability provides an even better method than color selection for
separating quasars from stars.Comment: (v2) 50 pages, accepted to Ap
Brillouin scattering studies in FeO across the Verwey transition
Brillouin scattering studies have been carried out on high quality single
crystals of FeO with [100] and [110] faces in the temperature range of
300 to 30 K. The room temperature spectrum shows a surface Rayleigh wave (SRW)
mode at 8 GHz and a longitudinal acoustic (LA) mode at 60 GHz. The SRW mode
frequency shows a minimum at the Verwey transition temperature of 123 K.
The softening of the SRW mode frequency from about 250 K to can be
quantitatively understood as a result of a decrease in the shear elastic
constant C, arising from the coupling of shear strain to charge
fluctuations. On the other hand, the LA mode frequency does not show any
significant change around , but shows a large change in its intensity. The
latter shows a maximum at around 120 K in the cooling run and at 165 K in the
heating run, exhibiting a large hysteresis of 45 K. This significant change in
intensity may be related to the presence of stress-induced ordering of
Fe and Fe at the octahedral sites, as well as to stress-induced
domain wall motion.Comment: 14 pages, 3 figures, accepted in Physical Review B 200
Strong out-of-plane magnetic anisotropy of Fe adatoms on BiTe
The electronic and magnetic properties of individual Fe atoms adsorbed on the
surface of the topological insulator BiTe(111) are investigated.
Scanning tunneling microscopy and spectroscopy prove the existence of two
distinct types of Fe species, while our first-principles calculations assign
them to Fe adatoms in the hcp and fcc hollow sites. The combination of x-ray
magnetic circular dichroism measurements and angular dependent magnetization
curves reveals out-of-plane anisotropies for both species with anisotropy
constants of meV/atom and meV/atom. These values are well in line with the results of
calculations.Comment: 6 pages, 3 figure
Risk of climate-induced damage in historical textiles
Eleven wool and silk historic textiles and two modern artist's canvases were examined to determine their water vapour adsorption, moisture dimensional response and tensile behaviour. All the textiles showed a similar general pattern of moisture response. A rise in ambient relative humidity (RH) from dry conditions produced expansion of a textile until a certain critical RH level after which a contraction occurred to a greater or lesser degree depending on the yarn crimp and the weave geometry. The largest expansion recorded between the dry state and 80% RH was 1.2 and 0.9% for wool and silk textiles, respectively. The largest shrinkage of 0.8% at high RH range was experienced by a modern linen canvas. Two potential damage mechanisms related to the moisture response of the textiles—stress building as a result of shrinkage of the textile restrained in its dimensional response and the fretting fatigue when yarns move with friction one against another—were found insignificant in typical textile display environments unless the textiles are severely degraded or excessively strained in their mounting
- …