123 research outputs found

    Charge and spin addition energies of one dimensional quantumn dot

    Full text link
    We derive the effective action for a one dimensional electron island formed between a double barrier in a single channel quantum wire including the electron spin. Current and energy addition terms corresponding to charge and spin are identified. The influence of the range and the strength of the electron interaction and other system parameters on the charge and spin addition energies, and on the excitation spectra of the modes confined within the island is studied. We find by comparison with experiment that spin excitations in addition to non-zero range of the interaction and inhomogeneity effects are important for understanding the electron transport through one dimensional quantum islands in cleaved-edge-overgrowth systems.Comment: 11 pages, 3 figures, to be published in Physical Review

    A novel code for numerical 3-D MHD studies of CME expansion

    Get PDF
    A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD) in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations. <br><br> To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs) and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model's (current) simplicity, we can confirm the CME's nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii. <br><br> Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated

    Control of spin in quantum dots with non-Fermi liquid correlations

    Full text link
    Spin effects in the transport properties of a quantum dot with spin-charge separation are investigated. It is found that the non-linear transport spectra are dominated by spin dynamics. Strong spin polarization effects are observed in a magnetic field. They can be controlled by varying gate and bias voltages. Complete polarization is stable against interactions. When polarization is not complete, it is power-law enhanced by non-Fermi liquid effects.Comment: 4 pages, 4 figure

    Status quo: Levels of Campylobacter spp. and hygiene indicators in German slaughterhouses for broiler and turkey

    Get PDF
    Poultry is a common reservoir for Campylobacter and a main source for human campylobacteriosis. With broiler being the predominant poultry for food production, most food safety related research is conducted for this species, for turkey, few studies are available. Although animals are typically colonized at the farm level, the slaughtering process is considered an important factor in re- and cross-contamination. We examined the development of Campylobacter, E. coli and total colony counts (TCC) after several processing steps in three broiler and one turkey slaughterhouses. Whole carcass rinsing and neck skin sampling was applied for broilers resulting in 486 samples in total, while 126 neck skin samples were collected for turkeys. A decrease in the loads of the different bacterial groups along the broiler slaughtering process was observed. Campylobacter mean counts dropped from 4.5 ± 1.7 log10 CFU/ml after killing to 1.6 ± 0.4 log10 CFU/ml after chilling. However, an increase in Campylobacter counts was evident after evisceration before the values again decreased by the final processing step. Although the Campylobacter prevalence in the turkey samples showed a similar development, the bacterial loads were much lower with 1.7 ± 0.3 log10 CFU/g after killing and 1.7 ± 0.4 log10 CFU/g after chilling compared to those of broilers. The loads of E. coli and total colony count of turkey were higher after killing, were reduced by scalding and remained stable until after chilling. This study highlights trends during the slaughtering process in reducing the levels of Campylobacter, E. coli, and total colony counts for broiler and turkey carcasses, from the initial step to after chilling. These results contribute to our understanding of microbial dynamics during meat processing

    Shot noise of a quantum dot with non-Fermi liquid correlations

    Full text link
    The shot noise of a one-dimensional wire interrupted by two barriers shows interesting features related to the interplay between Coulomb blockade effects, Luttinger correlations and discrete excitations. At small bias the Fano factor reaches the lowest attainable value, 1/2, irrespective of the ratio of the two junction resistances. At larger voltages this asymmetry is power-law renormalized by the interaction strength. We discuss how the measurement of current and these features of the noise allow to extract the Luttinger liquid parameter.Comment: 4 pages, 3 figures,to be published in Phys. Rev. B. For high resolution image of Fig.1 see http://server1.fisica.unige.it/~braggio/doc.ht

    Luminescence from highly excited nanorings: Luttinger liquid description

    Full text link
    We study theoretically the luminescence from quantum dots of a ring geometry. For high excitation intensities, photoexcited electrons and holes form Fermi seas. Close to the emission threshold, the single-particle spectral lines aquire weak many-body satellites. However, away from the threshold, the discrete luminescence spectrum is completely dominated by many-body transitions. We employ the Luttinger liquid approach to exactly calculate the intensities of all many-body spectral lines. We find that the transition from single-particle to many-body structure of the emission spectrum is governed by a single parameter and that the distribution of peaks away from the threshold is universal.Comment: 10 pages including 2 figure

    Transport of interacting electrons through a double barrier in quantum wires

    Full text link
    We generalize the fermionic renormalization group method to describe analytically transport through a double barrier structure in a one-dimensional system. Focusing on the case of weakly interacting electrons, we investigate thoroughly the dependence of the conductance on the strength and the shape of the double barrier for arbitrary temperature T. Our approach allows us to systematically analyze the contributions to renormalized scattering amplitudes from different characteristic scales absent in the case of a single impurity, without restricting the consideration to the model of a single resonant level. Both a sequential resonant tunneling for high T and a resonant transmission for T smaller than the resonance width are studied within the unified treatment of transport through strong barriers. For weak barriers, we show that two different regimes are possible. Moderately weak impurities may get strong due to a renormalization by interacting electrons, so that transport is described in terms of theory for initially strong barriers. The renormalization of very weak impurities does not yield any peak in the transmission probability; however, remarkably, the interaction gives rise to a sharp peak in the conductance, provided asymmetry is not too high.Comment: 18 pages, 8 figures; figures added, references updated, extended discussio

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
    • …
    corecore