485 research outputs found

    Explicit representations of biorthogonal polynomials

    Full text link
    Given a parametrised weight function ω(x,μ)\omega(x,\mu) such that the quotients of its consecutive moments are M\"obius maps, it is possible to express the underlying biorthogonal polynomials in a closed form \cite{IN2}. In the present paper we address ourselves to two related issues. Firstly, we demonstrate that, subject to additional assumptions, every such ω\omega obeys (in xx) a linear differential equation whose solution is a generalized hypergeometric function. Secondly, using a generalization of standard divided differences, we present a new explicit representation of the underlying orthogonal polynomials

    A new simulation technique for RF oscillators

    Get PDF
    The study of phase-noise in oscillators and the design of new circuit topologies necessitates an efficient technique for the simulation of oscillators. While numerous approaches have been developed over the years e.g. [1-3], each has its own merits and demerits. In this contribution, an asymptotic numeric method developed in e.g. [4-5] is applied to the simulation of RF oscillators. The method is closely related to the stroboscopic and high-order averaging method in [6] and the Heterogeneous Multiscale Methods in [7]. The method is advantageous in that the same methodology can be applied for the simulation of general circuit problems involving highly oscillatory ordinary differential equations, partial differential equations and delay differential equations. Furthermore and counter-intuitively, its efficacy improves with increasing frequency, a feature that is very favourable in modern communications systems where operating frequencies are ever rising. Results for a CMOS oscillator will confirm the validity and efficiency of the proposed method

    A Unified Approach to Spurious Solutions Introduced by Time Discretisation. Part I: Basic Theory

    Get PDF
    The asymptotic states of numerical methods for initial value problems are examined. In particular, spurious steady solutions, solutions with period 2 in the timestep, and spurious invariant curves are studied. A numerical method is considered as a dynamical system parameterised by the timestep h. It is shown that the three kinds of spurious solutions can bifurcate from genuine steady solutions of the numerical method (which are inherited from the differential equation) as h is varied. Conditions under which these bifurcations occur are derived for Runge–Kutta schemes, linear multistep methods, and a class of predictor-corrector methods in a PE(CE)^M implementation. The results are used to provide a unifying framework to various scattered results on spurious solutions which already exist in the literature. Furthermore, the implications for choice of numerical scheme are studied. In numerical simulation it is desirable to minimise the effect of spurious solutions. Classes of methods with desirable dynamical properties are described and evaluated

    Numerical Implementation of Gradient Algorithms

    Get PDF
    A numerical method for computational implementation of gradient dynamical systems is presented. The method is based upon the development of geometric integration numerical methods, which aim at preserving the dynamical properties of the original ordinary differential equation under discretization. In particular, the proposed method belongs to the class of discrete gradients methods, which substitute the gradient of the continuous equation with a discrete gradient, leading to a map that possesses the same Lyapunov function of the dynamical system, thus preserving the qualitative properties regardless of the step size. In this work, we apply a discrete gradient method to the implementation of Hopfield neural networks. Contrary to most geometric integration methods, the proposed algorithm can be rewritten in explicit form, which considerably improves its performance and stability. Simulation results show that the preservation of the Lyapunov function leads to an improved performance, compared to the conventional discretization.Spanish Government project no. TIN2010-16556 Junta de Andalucía project no. P08-TIC-04026 Agencia Española de Cooperación Internacional para el Desarrollo project no. A2/038418/1

    Long-time behaviour of discretizations of the simple pendulum equation

    Full text link
    We compare the performance of several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. We choose for the comparison numerical schemes which preserve the qualitative features of solutions (like periodicity). All these schemes are either symplectic maps or integrable (preserving the energy integral) maps, or both. We describe and explain systematic errors (produced by any method) in numerical computations of the period and the amplitude of oscillations. We propose a new numerical scheme which is a modification of the discrete gradient method. This discretization preserves (almost exactly) the period of small oscillations for any time step.Comment: 41 pages, including 18 figures and 4 table

    Resummation of perturbation series and reducibility for Bryuno skew-product flows

    Full text link
    We consider skew-product systems on T^d x SL(2,R) for Bryuno base flows close to constant coefficients, depending on a parameter, in any dimension d, and we prove reducibility for a large measure set of values of the parameter. The proof is based on a resummation procedure of the formal power series for the conjugation, and uses techniques of renormalisation group in quantum field theory.Comment: 30 pages, 12 figure

    Asymptotic solvers for ordinary differential equations with multiple frequencies

    Get PDF
    We construct asymptotic expansions for ordinary differential equations with highly oscillatory forcing terms, focusing on the case of multiple, non-commensurate frequencies. We derive an asymptotic expansion in inverse powers of the oscillatory parameter and use its truncation as an exceedingly effective means to discretize the differential equation in question. Numerical examples illustrate the effectiveness of the method

    Symmetry Reduction of Optimal Control Systems and Principal Connections

    Full text link
    This paper explores the role of symmetries and reduction in nonlinear control and optimal control systems. The focus of the paper is to give a geometric framework of symmetry reduction of optimal control systems as well as to show how to obtain explicit expressions of the reduced system by exploiting the geometry. In particular, we show how to obtain a principal connection to be used in the reduction for various choices of symmetry groups, as opposed to assuming such a principal connection is given or choosing a particular symmetry group to simplify the setting. Our result synthesizes some previous works on symmetry reduction of nonlinear control and optimal control systems. Affine and kinematic optimal control systems are of particular interest: We explicitly work out the details for such systems and also show a few examples of symmetry reduction of kinematic optimal control problems.Comment: 23 pages, 2 figure
    corecore