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2 Facultad de Matemática y Computación. Universidad de La Habana (Cuba)
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Abstract. A numerical method for computational implementation of
gradient dynamical systems is presented. The method is based upon the
development of geometric integration numerical methods, which aim at
preserving the dynamical properties of the original ordinary differential
equation under discretization. In particular, the proposed method be-
longs to the class of discrete gradients methods, which substitute the
gradient of the continuous equation with a discrete gradient, leading to
a map that possesses the same Lyapunov function of the dynamical sys-
tem, thus preserving the qualitative properties regardless of the step size.
In this work, we apply a discrete gradient method to the implementa-
tion of Hopfield neural networks. Contrary to most geometric integra-
tion methods, the proposed algorithm can be rewritten in explicit form,
which considerably improves its performance and stability. Simulation
results show that the preservation of the Lyapunov function leads to an
improved performance, compared to the conventional discretization.

Keywords: Gradient Systems, Hopfield Neural Networks, Geometric
Integration

1 Introduction

Algorithms that include some sort of gradient computation are pervasive in ma-
chine learning literature and, in fact, in all branches of mathematics and com-
puter science. A non-exhaustive list could include backpropagation [7], recurrent
neural networks [8, 9] or parameter estimation [3, 4]. The performance of such
algorithms is a direct consequence of their dynamical behaviour, i.e. the fact that
states follow a trajectory such that the gradient of some function, usually a target
function of some optimization problem, is forced to decrease. Many algorithms
have a natural description in continuous time, i.e. they are formally defined as
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Ordinary Differential Equations (ODEs), so that they should be discretized in
order to be implemented as a practical algorithm on a digital computer, which is
intrinsically a discrete system. In general, numerical methods used to discretize
a continuous system will destroy the dynamical properties.

The recent approach of geometric numerical integration aims at designing
numerical methods for ODEs that preserve the qualitative properties of the
original ODE [13, 6]. This approach has been rather fruitful in providing nu-
merical methods for Hamiltonian systems, whereas few methods have been pro-
posed that preserve the Lyapunov function of gradient systems. To the best of
our knowledge, the main proposals in this regard comprise the discrete gradient
methods [12] and the projection methods [5]. On one hand, projection methods
are too involved and, although they are formally explicit, they require solving a
nonlinear equation at every step. Projection methods have the advantage that
arbitrary order can be achieved but, when preservation of the gradient struc-
ture is the main aim and accuracy is not crucial, discrete gradient methods are
more appealing. However, on the other hand, no practical implementations of
discrete gradient methods have been pursued. Therefore, in this contribution we
construct a discrete gradient method for the implementation of Hopfield neural
networks.

In Section 2 we briefly recall the definition of discrete gradient methods. Hop-
field neural networks are presented as an interesting case in point in Section 3.
The main contribution of this paper is the construction of a discrete gradient
method for continuous Hopfield networks, which is the subject of Section 4.
Some experimental results shown in Section 5 support the performance of the
proposed implementation. Finally, Section 6 gathers the conclusions and suggest
some directions for further research.

2 Numerical methods based on discrete gradients

In this section we recall, for the sake of completeness, the process of construction
of a numerical method that preserves the Lyapunov function of an ODE, by
means of a discrete gradient. Further details can be found in references [12].

First of all, consider an ODE
d y

d t
= f(y) with the usual assumptions about

existence and uniqueness of solutions, so that a trajectory y(t) is defined for
each initial value y0 = y(0). The trajectories y(t) are defined on the real n-
dimensional vectorial space Rn. The interesting case for our exposition is the
existence of—at least—one equilibrium yf , i.e. a point where f(yf ) = 0 holds.
We assume further that such equilibrium is asymptotically stable, which amounts
to both stability in the sense of Lyapunov and attractiveness; in other words,
all trajectories y(t) that start in a neighbourhood of yf remain in a—possibly
different—neighbourhood and tend to the equilibrium, i.e.: lim

t→∞
y(t) = yf . It

is well known from the converse Lyapunov function theorems [11] that if an
equilibrium is asymptotically stable, then a Lyapunov function exists. Then we
assume the explicit knowledge of a function V (y) that satisfies the conditions



for being a Lyapunov function in a neighbourhood of the equilibrium yf . Recall
that a Lyapunov function, apart from usual smoothness assumptions, fulfils the

condition
d V

d t
≤ 0 and yf must be a—possibly local—minimum of V . Then, the

ODE
d y

d t
= f(y) can be written in the linear-gradient form:

d y

d t
= L(y)∇V (y) (1)

where L(y) is a symmetric and negative-semidefinite matrix function and ∇V (y)
is the gradient of the function V . Arguably the fact that the ODE is explicitly
written in the linear-gradient form could have been taking as the starting as-
sumption for the studied systems, however it is worth emphasizing that the
linear-gradient form given by Equation (1) is not unique [10].

An ODE that has been rewritten in the form of linear gradient, as in Equa-
tion (1), can be discretized by considering the following integration method:

yk+1 − yk
h

= L̃(yk, yk+1, h)∇V (yk, yk+1) (2)

where L̃ is an approximation of L such that L̃(yk, yk, 0) = L(y) and ∇V is a
discrete gradient, i.e. the following conditions are met:

∇V (yk, yk+1) · (yk+1 − yk) = V (yk+1)− V (yk)

∇V (y, y) = ∇V (y)

(3)

It can be proved that the numerical method given by Equation (2) has the
same Lyapunov function as the original ODE, regardless the step size h, thus
the approximate discretized trajectories will converge to the same equilibria,
provided that initial values are close enough.

Note that there is considerable freedom in the choice of both L̃ and ∇V and,
in general, the method given by Equation (2) is implicit. In this paper we propose
a suitable choice of these functions so that an explicit method for discretization
of Hopfield networks is obtained.

3 Continuous Hopfield Networks

Hopfield networks comprise a well known neural paradigm that was originally
defined as a discrete time recurrent system [8]. Then, a continuous version [9]
was proved to be useful for solving, among others, optimization problems. In the
Abe formulation [1], the continuous Hopfield network is defined by the following
system of ODEs:

d u

d t
= W y − b ; y = tanhu (4)



where u and y are n-dimensional vectors, W is a zero-diagonal matrix of weights,
and b is a bias vector. Note that the computation of the vector y is componen-
twise, i.e. yi = tanhui for i = 1 . . . n is meant. From a biological point of view,
the vector u represents the post-synaptic potentials of the neurons whereas the
vector y represents the action potential, thus y can be considered an output and
u comprises the internal neuron states. However, mathematically the variables
y are fed back into the ODE so it is convenient to rewrite the model depending
only on this vector, which results from the chain rule:

d y

d t
=

d y

d u

d u

d t
= (1− tanh2 u) (W y − b) = (1− y2) (W y − b) (5)

Then, from the dynamical point of view, Hopfield networks are stable systems
because a Lyapunov function can be defined as a function of the states y:

V (y) = −1

2
y′W y + b′ y (6)

where the apostrophe ′ denotes matrix transpose. We emphasize that the con-
struction of a practical optimization algorithm from Hopfield networks stems
from the dynamical properties [2]: since a Lyapunov function is decreasing over
time, thus the evolution of the states of the network heads towards a stable
equilibrium, where the Lyapunov function presents a—possibly local—minimum.
Therefore, an optimization problem where the target function has the same struc-
ture of the Lyapunov function given by Equation (6) is solved by matching the
target and the Lyapunov function, so that the weights and biases are obtained.
Finally, the network is “constructed”, which usually means that some numerical
method is used to integrate Equation (4) until the states reach an equilibrium,
which provides the minimum. Therefore, using a numerical method that pre-
serves the dynamical properties of the continuous ODE under discretization is
a crucial step, since a solution is only obtained by an algorithm that mimics the
correct dynamical behaviour.

4 Discretization of Hopfield Networks

In this section, for the sake of comparison, we describe the conventional dis-
cretization that is usually adopted to implement Hopfield networks. Then, we
apply the results of Section 2 to define a discrete gradient method that numer-
ically integrates a Hopfield network while preserving the Lyapunov function,
regardless of the step size h.

The usual discretization of Hopfield networks results from replacing the

derivative
d u

d t
by the linear approximation

uk+1 − uk

h
in Equation (4) for a cho-

sen h that should be small enough. Therefore, a two-step iteration that involves
both the internal potential u and the state y is obtained:

uk+1 = uk + h (W yk − b) ; yk+1 = tanhuk+1 (7)



The linear approximation is well founded—indeed it is the basis for the well
known Euler rule—but it does not guarantee that the resulting numerical method
will preserve the dynamical properties of the ODE and, in particular, that it will
possess the same Lyapunov function as the continuous dynamical system.

We now present the main contribution of the paper: designing a discrete
gradient method for the Hopfield network. First of all, recall that the Hopfield
network given by Equation (4) can be cast into the linear gradient form, by
eliminating the internal variable u, as shown in Equation (5). Then, the functions

L̃ and ∇ are chosen with a suitable definition:(
L̃(y, z, h)

)
ii

= 1− yi zi

(
∇V (y, z)

)
i

=
V (z1 . . . zi, yi+1 . . . yn)− V (z1 . . . zi−1, yi . . . yn)

zi − yi

(8)

and L̃ is a diagonal matrix, i.e.
(
L̃(y, z, h)

)
ij

= 0 if i 6= j. It is straightforward

to prove that this choice is consistent with the definition of discrete gradient pre-
sented in Section 2. A crucial point of this definition is the fact that the implicit
numerical method given by Equation (2) can be rewritten as an explicit method
in the particular case of Hopfield networks. After straightforward algebra, the
proposed iteration results:

(yk+1)i =
(yk)i + h

(
W v(i) − b

)
i

1 + h (yk)i
(
W v(i) − b

)
i

(9)

where v(i) is a vector with mixed components:
(
v(i)
)
j

= (yk+1)j if j < i and(
v(i)
)
j

= (yk)j if j ≥ i. Note that Equation 9 is an explicit map because the

matrix W has zeros on the diagonal.

5 Experimental results

In this section we present a summary of our simulation results, which show
the superior performance of the discrete gradient numerical method, designed
to preserve the Lyapunov function of an ODE. The continuous Hopfield net-
work, as described in Section 3, is used as a case in point since, as mentioned
above, its optimization ability is a result of its dynamical properties. In par-
ticular, the definition of a Lyapunov function, which is matched to the target
function of the optimization problem, proves that the trajectories of the states
of Hopfield networks converge to stable equilibria. We measure the performance
of a discretization algorithm considering two features of the convergence to the
minimum: convergence speed and avoidance of local minima.

A Hopfield network has been implemented both with the numerical method
based upon discrete gradients and the conventional discretization, as presented



Fig. 1. Decrease in target function along trajectories for the conventional Hopfield
implementation and the numerical method based upon discrete gradient.

Fig. 2. Relative outperformance (percentage) of the method of discrete gradient re-
garding target function decreasing.



Fig. 3. Decrease in target function along trajectories, considering another initial point:
each method converges to a different stable point.

Fig. 4. Relative outperformance (percentage) of the method of discrete gradient re-
garding target function decreasing for the same initial point as in Figure 3.



in Section 4. The same value of the step size h was assigned for both methods.
A battery of experiments has been performed, by assigning different values to
all design parameters of the neural network: dimension—number of neurons—
of the network, weight matrix and initial point of the trajectory. The results
show a consistent outperformance of the discrete gradient method, both from
the point of view of convergence speed and avoidance of local minima. There is
certainly a random component, due to the choice of initial point, but in most of
the experiments the discrete gradient method converges considerably faster. In
a significant number of instances, the discrete gradient method attains a stable
equilibrium that corresponds to a lower value of the target function, whereas
the conventional Hopfield implementation is stuck at a local minimum. The dis-
crete gradient method, as all algorithms based upon local approximations, is not
immune to local minima, but the occasions in which the solution provided by
the conventional network is better are exceptional and statistically not signifi-
cant. Only a portion of these experiments, which is considered to illustrate the
conclusions, is here shown for brevity.

In Figure 1, the implementation of an instance of a Hopfield network of
dimension n = 30 is depicted, showing the discretization with the discrete gra-
dient method and the conventional Hopfield network. Since the trajectories of
the 30 components of the state are not particularly informative, only the values
of the target function at each state are presented. The graphs show that both
algorithms converge to the same equilibrium, thus the attained value of the
target function is the same. However, the discrete gradient method converges
significantly faster since, for instance, reaching the value V = −600 requires a
20 percent less in the number of computed iterations, approximately. In Fig-
ure 2, the values of the target functions along the simulated trajectories with
both methods are shown as the percentage that the discrete gradient method is
lower than the value achieved by the conventional method. At some stages of the
network evolution, the discrete gradient algorithm provides a value of the target
function that is almost 80 percent lower than that of the conventional Hopfield
method, using the absolute value of the minimum of both values as a base. Note
that faster convergence of a method is a significant finding, since it could mean
that a quasi-optimal solution is obtained with reasonable computational cost,
where is the computing time of a slower algorithm may be unaffordable.

Similar results are shown in Figures 3 and 4, but now the difference between
both methods is qualitative, since a different stable equilibrium is attained, i.e.
the solutions obtained by the two methods are different. In Figure 3, again
faster decrease of the target function achieved by discrete gradient method is
observable and, besides, a significantly lower value is finally attained. This fact
confirms that the conventional method has stuck at a local minimum. In Figure 4,
the relative improvement in the obtained value of the target function is obtained.
Not only the discrete gradient outperforms the conventional method during the
network evolution, but also the solution finally obtained is a 40p̃ercent better,
approximately.



An exhaustive set of experiments supports that the discrete gradient method
outperforms the conventional Hopfield implementation as a rule.

6 Conclusions and future directions

We have presented the construction of a numerical method for implementation of
continuous Hopfield networks. The method is based upon discrete gradients, thus
it guarantees the preservation of the Lyapunov function, which is the key to the
optimization ability of Hopfield networks. The suitable choice of the functions
that define the method leads to an explicit method, which is a considerable
advantage concerning both stability and computational cost. Simulation results
show that the proposed method provides superior performance compared to the
conventional implementation of Hopfield networks.

We suggest that this novel method paves the way for far-reaching advances
in the construction of algorithms, beyond the particular case presented. More
attention should be paid to the preservation of dynamical properties under dis-
cretization and the application of techniques from the geometric integration ap-
proach should be widespread. Therefore we are currently engaged in two main
directions for expanding the presented results. On the one hand, we are generaliz-
ing the discrete gradient method to a wide range of systems, more complex than
Hopfield networks. On the other hand, we aim at a deeper theoretical founda-
tion for discrete gradients, in particular developing more accurate, higher-order
methods, while preserving the qualitative properties of the dynamical system.
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