632 research outputs found

    WebProt\'eg\'e: A Cloud-Based Ontology Editor

    Full text link
    We present WebProt\'eg\'e, a tool to develop ontologies represented in the Web Ontology Language (OWL). WebProt\'eg\'e is a cloud-based application that allows users to collaboratively edit OWL ontologies, and it is available for use at https://webprotege.stanford.edu. WebProt\'ege\'e currently hosts more than 68,000 OWL ontology projects and has over 50,000 user accounts. In this paper, we detail the main new features of the latest version of WebProt\'eg\'e

    Predicting the understandability of OWL inferences

    Get PDF
    In this paper, we describe a method for predicting the understandability level of inferences with OWL. Specifically, we present a model for measuring the understandability of a multiple-step inference based on the measurement of the understandability of individual inference steps. We also present an evaluation study which confirms that our model works relatively well for two-step inferences with OWL. This model has been applied in our research on generating accessible explanations for an entailment of OWL ontologies, to determine the most understandable inference among alternatives, from which the final explanation is generated

    Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa)

    Get PDF
    We examined the development of the nervous system in the rhopalium, a medusa-specific sensory structure, in Aurelia sp.1 (Cnidaria, Scyphozoa) using confocal microscopy. The rhopalial nervous system appears primarily ectodermal and contains neurons immunoreactive to antibodies against tyrosinated tubulin, taurine, GLWamide, and FMRFamide. The rhopalial nervous system develops in an ordered manner: the presumptive gravity-sensing organ, consisting of the lithocyst and the touch plate, differentiates first; the “marginal center,” which controls swimming activity, second; and finally, the ocelli, the presumptive photoreceptors. At least seven bilaterally arranged neuronal clusters consisting of sensory and ganglion cells and their neuronal processes became evident in the rhopalium during metamorphosis to the medusa stage. Our analysis provides an anatomical framework for future gene expression and experimental studies of development and functions of scyphozoan rhopalia

    An ontological approach to creating an Andean Weaving Knowledge Base

    Get PDF
    Andean textiles are products of one of the richest, oldest and continuous weaving traditions in the world. Understanding the knowledge and practice of textile production as a form of cultural heritage is particularly relevant in the Andean context due to erosion of clothing traditions, reuse of traditional textiles on commodities targeted at the tourism market, and loss of knowledge embedded in textile production. ``Weaving Communities of Practice'' was a pilot project that aimed to create a knowledge base of Andean weaving designed to contribute to curatorial practice and heritage policy. The research team gathered data on the chain of activities, instruments, resources, peoples, places and knowledge involved in the production of textiles, relating to over 700 textile samples. A major part of the project has been the modelling and representation of the knowledge of domain experts and information about the textile objects themselves in the form of an OWL ontology, and the development of a suite of search facilities to be supported by the ontology. This paper describes the research challenges faced in developing the ontology and search facilities, the methodology adopted, the design and implementation of the system, and the design and outcomes of a user evaluation of the system undertaken with a group of domain experts

    The usability of description logics: understanding the cognitive difficulties presented by description logics

    Get PDF
    Description Logics have been extensively studied from the viewpoint of decidability and computational tractability. Less attention has been given to their usability and the cognitive difficulties they present, in particular for those who are not specialists in logic. This paper reports on a study into the difficulties associated with the most commonly used Description Logic features. Psychological theories are used to take account of these. Whilst most of the features presented no difficulty to participants, the comprehension of some was affected by commonly occurring misconceptions. The paper proposes explanations and remedies for some of these difficulties. In addition, the time to confirm stated inferences was found to depend both on the maximum complexity of the relations involved and the number of steps in the argument

    Predator-Induced Vertical Behavior of a Ctenophore

    Get PDF
    Although many studies have focused on Mnemiopsis leidyi predation, little is known about the role of this ctenophore as prey when abundant in native and invaded pelagic systems. We examined the response of the ctenophore M. leidyi to the predatory ctenophore Beroe ovata in an experiment in which the two species could potentially sense each other while being physically separated. On average, M. leidyi responded to the predator’s presence by increasing variability in swimming speeds and by lowering their vertical distribution. Such behavior may help explain field records of vertical migration, as well as stratified and near-bottom distributions of M. leidyi

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research
    corecore