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Abstract. Understanding the logical meaning of any description logic or sim-
ilar formalism is difficult for most people, and OWL-DL is no exception. This
paper presents the most common difficulties encountered by newcomers to the
language, that have been observed during the course of more than a dozen work-
shops, tutorials and modules about OWL-DL and it’s predecessor languages.
It emphasises understanding the exact meaning of OWL expressions – proving
that understanding by paraphrasing them in pedantic but explicit language. It ad-
dresses, specifically, the confusion which OWL’s open world assumption presents
to users accustomed to closed world systems such as databases, logic program-
ming and frame languages. Our experience has had a major influence in formulat-
ing the requirements for a new set of user interfaces for OWL the first of which are
now available as prototypes. A summary of the guidelines and paraphrases and
examples of the new interface are provided. The example ontologies are available
online.

1 Introduction

1.1 Background

Most people find it difficult to understand the logical meaning and potential inferences
statements in description logics, including OWL-DL. While there are several initial
guides to ontologies available, e.g. [15, 6, 2, 7] and numerous works on ontological prin-
ciples, e.g. [3, 4, 14], there is little guidance on how to use OWL-DL or related descrip-
tion logic formalism so as to make effective use of their classifiers (aka “reasoners”)
and even less on the pitfalls involved in their use. Likewise, few example ontologies on
the web make extensive use of inference.

Over the past five years the authors have presented a series of tutorials, workshops
and post-graduate modules, teaching people to use OWL-DL and its predecessors ef-
fectively. The purpose of this paper is to systematise the knowledge gained about new



users’ difficulties in understanding OWL, to present examples which address those mis-
understandings and patterns which avoid them.

The most common problems which we address are:

1. Failure to make all information explicit - assuming that information implicit in
names is “represented” and available to the classifier.

2. Mistaken use of universal rather than existential restrictions as the default
3. Open world reasoning
4. The effect of range and domain constraints as axioms

To this we can add the additional problems posed by:

1. Trivial satisfiability of universal restrictions – that “only” (allValuesFrom) does
not imply “some” (someValuesFrom).

2. The difference between defined and primitive classes and the mechanics of con-
verting one to the other.

3. Errors in understanding common logical constructs.
4. Expecting classes to be disjoint by default.
5. The difficulty of understanding subclass axioms used for implication.

(Note that this paper only concerns issues in defining OWL classes, since this is the
strength of OWL-DL and most existing classifiers deal with individuals incompletely
or not at all.)

Our experience to date has been with the first generation of tools for OWL-DL
and its predecessors, OilEd [1]3, and with even earlier tools fromOpenGALEN [11]4.
The requirements for the new tools being developed in the Protéǵe-OWL-CO-ODE
environment5 [5] collaboratively by the authors have been informed by this experience.

Ontologies corresponding to the paper can be found athttp://www.co-ode.
org/ontologies . All tools are available at the URLs for the projects given in the
footnotes.

1.2 The tutorials: Pizza, Manchester House Style, and “What does it mean”

We have used many example ontologies over the years - vehicles, IKEA catalogues, the
University department and course, biomedical examples – but for Western audiences
pizzas have proven most successful.6 They are familiar; they are fun; they are funda-
mentally compositional. They are concrete and physical; real pizza menus are readily
available; and they avoid thorny ontological issues involved in abstract notions such
as “ideas”, “causation”, “agency”, etc. Nonetheless, they are rich enough to illustrate
key issues. Constructing correct definitions of pizzas from a menu and for a “vege-
tarian pizza” so that the correct pizzas are classified as “vegetarian” turns out to be a
surprisingly challenging exercise.

3 http://oiled.man.ac.uk
4 http://www.opengalen.org
5 http://protege.Stanford.edu→ plugins→ backends→ OWL; http://www.co-ode.org
6 For some non-western audiences, alternatives are required but are outside the scope of this

paper



The style presented here is unashamedly theManchester House Style– what we
consider good practice. We do not claim that it is the only way to model in OWL-DL,
but we do claim that it is one proven, effective way. The central feature of the style is
“normalisation” described in detail in [10]. Note that a slightly simplified form of the
OWL abstract syntax [8] is used in this paper which uses “and” and “or” rather than
“ intersectionOf” and “unionOf”, as this corresponds more closely to what actually
appears in both OilEd and the Protéǵe -OWL-CO-ODE interfaces.

2 The Basics

Before discussing the serious difficulties encountered by newcomers, it is helpful to
introduce the pizza example and some basics - the notion of disjointness of classes,
the function of the classifier in testing consistency, the basic notion of descriptions and
existential graphs, and the first conventions for paraphrasing OWL. (The full set of
conventions for paraphrasing appears at the end of the paper in Table 1 ).

2.1 Subsumption, Disjointness and the classifier

Fig. 1. Pizza hierar-
chy(Revised disjoint)

A simple taxonomy of pizza toppings is shown in Figure 1.
The first question for a newcomer to OWL is “What does such
a hierarchy actually mean?” By contrast to frame systems, sub-
sumption in OWL means necessary implication, so the hierar-
chy means that “All Pepperoni is Meat”, that “All Meat is a
Pizza topping”, etc.7

Does this mean thatMeat andFish andVegetables etc.
are all different? Can there be anything that is bothMeat and
Vegetable? Users of many other formalisms would naturally
assume that they were different, at least unless they had an
explicit common child.

However, in OWL, classes are overlapping until disjoint-
ness axioms are entered. This can be illustrated using a proce-
dure that also demonstrates the role of the classifier in checking
the consistency of the ontology.

First, a classMeatyVegetable is created that is a subclass of bothMeat andVeg-
etable. This means that allMeatyVegetable are kinds ofMeat and also kinds ofVeg-
etable. The classifier is then run first without the disjointness axioms betweenMeat
andVegetable and then after they have been inserted. Without the disjointness axioms,
running the classifier produces no change. However, when the disjointness axioms are
added,MeatyVegetable is marked in red in the Protéǵe-OWL interface, indicating that
it is inconsistent or “unsatisfiable”. In Protéǵe -OWL-CO-ODE a note that it has been
found unsatisfiable also appears in the list of changes, and a warning is issued during
classification.

7 One must immediately add something like “for purposes of this ontology.” (It would be better
to add a suffixTopping everywhere, and we normally do so in ontologies, but for this paper it
leads to long expressions which tend not to fit on a single line.)



That the notion of a “meaty vegetable” should be inconsistent conforms with users’
intuitions from the names of the classes. However, it is critical to understand that this
implicit information in their names is unavailable to the classifier.Meat andVegetable
are only recognised by the classifier as disjoint if the disjointness axioms are entered
explicitly.

One of the most common errors in building ontologies in OWL has been to omit the
disjointness axioms. To help users manage disjointness axioms, the Protéǵe -OWL-CO-
ODE interface makes entering them easy by providing a single button to add or remove
disjointness axioms amongst all siblings of a given parent8 (See Figure 18).

2.2 Properties and existential restrictions

The purpose, however, of OWL is not just to create a concept hierarchy but to describe
and define concepts. Therefore we want to ‘build’ some pizzas. Figure 2 gives a descrip-
tion of the concept –MargheritaPizza9 – from a Pizza menu as typically constructed
by students early on in the course.

The first problem for students is to understand exactly what the description in Fig-
ure 2 means. That allMargheritaPizza haveMozzarella andTomato? That any piz-
zas havingMozzarella andTomato areMargheritaPizza? ThatMargheritaPizza has
Mozzarella andTomato and nothing else? The paraphrase makes the meaning abso-
lutely clear. The italicised words – “amongst other things” and “some” - are critical.

Note that one of the most common errors made by newcomers to OWL is to use
universal (allValuesFrom) rather than existential (someValuesFrom) as the default
qualifier. This error is pernicious because the results often appear to work initially with
the problems only becoming evident later in the course of developing the ontology. (See
also Section 5.3). In teaching we go to great effort to ensure that existentialsomeVal-
uesFrom restrictions are used as the default from the beginning, both through the order
of presentation and through the software used, wheresomeValuesFrom is always the
default (See also section 5.1).

OWL:
class (MargheritaPizza partial
Pizza
restriction (hasTopping someValuesFromMozzarella)
restriction (hasTopping someValuesFromTomato))
Paraphrase:
Margherita pizzas have,amongst other things, somemozzarella topping and
alsosometomato topping.

Fig. 2. Description and paraphrase of a Margherita Pizza.

8 In OilEd, by contrast, disjointness axioms have to be entered on a separate tab.
9 Margherita Pizzas are listed on the menu has having cheese and tomato toppings



3 Definitions and the Open World Assumption

3.1 Defined Classes: “Conceptual Lego”

OWL:
Class(CheeseyPizza complete
Pizza
restriction (hasTopping someValuesFromCheese))
Paraphrase:
A cheesey pizza isanypizza that has,amongst other things, somecheese
topping.

Fig. 3. Initial definition of cheesey pizza

“Primitive” and “defined”classes is one of the major novelties of OWL and Under-
standing the difference between them is one of the major stumbling blocks for newcom-
ers.

Many potential users are familiar with either frame systems such as Protéǵe or ob-
ject oriented programming and analysis and UML. In both formalisms, things can be
described by necessary conditions but not as defined classes with sufficiency condi-
tions. However, in OWL, new concepts can be built up from existing concepts by fitting
them together in definitions like blocks of Lego. More formally, OWL allows concepts
to be defined by sets of necessary and sufficient conditions as shown in Figure 3. We
refer to classes for which there are only necessary conditions – marked by the keyword
“partial”10 in the abstract syntax – as “primitive” classes, harking back to an older
terminology. Classes for which there is at least one set of necessary and sufficient con-
ditions – marked in the abstract syntax by the keyword “complete” – are referred to as
as “defined”.11

In the paraphrase the meaning of definitions is emphasized by the italicized “any”
– i.e.any pizza that satisfies these conditions will be classified as a “cheesey pizza”.

In our experience, the most common accidental error in implementing OWL on-
tologies is to fail to make a set of restrictions a definition - i.e. to fail to make the
definition “complete” rather than “partial”, or “necessary and sufficient” rather than
just “necessary”. It is critical to understand that, in general, nothing will be inferred
to be subsumed under a primitive class by the classifier. For example in (Figure 3), if
“complete” is replaced by “partial”, then nothing will appear underCheesyPizza.

10 OWL descriptions are sometimes known as “partial definitions” and the keyword “partial”,
appears in OWL syntax and in OilEd. This usage is seriously misleading and the term “partial
definition” a misnomer. Many of the restrictions on primitive, or indeed defined, classes are
necessary implications and take no part in any set of necessary and sufficient conditions - i.e.
in definitions - “partial” or otherwise.

11 It is also possible to make the distinction using the difference between “SubClassOf” and
“EquivalentClasses”, but we usually postpone that discussion until the basics are understood.



Buttons to toggle class description

from ‘Partial’ to ‘Complete’

OilEd Axioms pane

Fig. 4. OilED sets “partial” by default

The first thing, therefore, to check when things fail to be classified under a concept,
is whether or not the description of the concept is “defined” or “primitive”. In OilEd, a
small button in the upper right hand corner of the screen, is used to toggle from “partial”
to “complete” and is set to “partial” by default (Figure 4). A major goal for the the new
Prot́eǵe -OWL-CO-ODE interface has been to make the distinction between primitive
and defined classes clearer (See Figure 18).

3.2 Open world reasoning: Vegetarian Pizzas

The biggest single hurdle to understanding OWL and Description Logics is the use of
Open World Reasoning. Almost certainly, all systems that newcomers to OWL will
have encountered previously use closed world reasoning with “negation as failure” –
i.e. if something cannot be found, it is assumed to be absent,e.g.databases, logic pro-
gramming, constraint languages in frame systems, etc. By contrast, OWL uses open
world reasoning with negation as unsatisfiability -i.e. something is false only if it can
be proved to contradict other information in the ontology.

OWL:
class (VegetarianPizza complete
Pizza
complementOf( restrictionhasPart someValuesFromMeat)
complementOf( restrictionhasPart someValuesFromFish))
Paraphrase:
A vegetarian pizza isanypizza that,amongst other things, both doesnot have
somemeat topping and also doesnot havesomefish topping.

Fig. 5. Correct definitions of Vegetarian Pizza.

This point is dramatically made by attempting to define aVegetarianPizza. Ex-
pressing the negation is a problem in itself that is discussed under section 5 “Logical
Issues”. However, even once a correct logical definition is formulated as in Figure 5,
there are surprises.



OWL:
class (MeatyMargheritaPizza complete
Pizza
restriction (hasTopping someValuesFromTomato)
restriction (hasTopping someValuesFromMozzarella)
restriction (hasTopping someValuesFromSpicyBeef))
Paraphrase:
A meaty margherita pizza isanypizza which,amongst other things, hassome
tomato topping and alsosomemozzarella topping and alsosomespicy beef
topping.

Fig. 6. Definition of a “meaty margherita pizza” which is consistent and will be classified under
Margherita pizza even though it has a meat topping.

Given the definitions so far,MargheritaPizza does not classify asVegetarian-
Pizza. There is nothing in their definition that makes it contradictory to add meat or
fish toppings. For example theMeatyMargherita pizza defined in Figure 6 is consis-
tent and classifies underMargheritaPizza.

That the definition ofMargheritaPizza was inadequate should be clear from the
paraphrases in Figures 2 and 6. The rules for paraphrasing require adding “amongst
other things” and “any” specifically so as to capture the open world assumption im-
plicit in all OWL expressions. Clearly, the paraphrase does not correspond to what most
restaurant customers would understand from the menu – that a Margherita pizza is a
pizza that has mozzarella and tomato toppings and only those toppings. This intuitive
understanding is captured formally in the OWL definition in Figure 7. The final restric-
tion is known as a “closure restriction” or “closure axiom” because it closes off the
possibility of further additions for a given property. “allValuesFrom” is paraphrased as
“only”, because to say thatall values come from a given class is the same as saying that
values mayonlycome from that class.

OWL:
Class(MargheritaPizza complete
Pizza
restriction (hasTopping someValuesFromTomato)
restriction (hasTopping someValuesFromMozzarella)
restriction (hasTopping allValuesFrom (Tomato or Mozzarella)))
Paraphrase:
A margherita pizza isanypizza which,amongst other things, hassometomato
topping and alsosomemozzarella toppings and also hasonlymozzarellaand/or
tomato toppings.

Fig. 7. Correct version of definition of Margherita pizza with closure restriction.

The phrase “amongst other things” in the paraphrase still allows space for aMargher-
itaPizza to have restrictions involving properties other thanhasTopping - e.g.to repre-



sent that it is stale, overcooked, chopped into pieces etc. Anything except amargherita
pizza with additional toppings.

3.3 Which classes should be defined? Which primitive? How to decide?

A common question from newcomers to OWL is how they should decide which classes
to define. The choice of the “skeleton taxonomies” of primitive concepts is a key part
of the method of “untangling” discussed in Section 6.2 and in more detail in [13, 12].
However, we suggest three basic heuristics:

– Pragmatic: Do you want things to be classified under the given class automatically?
– Do you want to commit to a definition now? You can always return to the item and

change it from primitive to defined later. In fact this is a key part of the methodology
we advocate.

– Philosophical. Can you define it completely? There are many things which are “nat-
ural kinds” [9] which are virtually impossible to define completely, at least outside
a highly technical context - e.g. people, kinds of animals, universities, languages,
etc. These are usually best left primitive and merely described. Definition of natu-
ral kinds usually turn out to be long and incomplete. Therefore a useful heuristic is
that if the definition is getting long or controversial, consider leaving the class as
primitive.

4 Domain and Range Constraints and Other Axioms

4.1 Subclass (implication) axioms

OWL allows general expressions to be used in axioms. Like domain and range con-
straints, axioms are global and do not necessarily appear near the classes affected. On
the one hand, the notion that “B is a subclass of A” means “B implies A” emphasizes the
meaning of subsumption. On the other, it seems an odd way to express implication, if
that is really what is intended. Hence care is required with the paraphrase and improved
user interfaces for axioms for Protéǵe -OWL-CO-ODE are under development.

4.2 Domain and range constraints are axioms

Where most users encounter axioms is in domain and range constrains. In most lan-
guages domain and range constraints on properties are simply checked and generate
errors if violated. In OWL they are axioms and are used in reasoning, with potentially
far-reaching and unexpected effects. They may cause a class to be unsatisfiable or they
may cause a class to be “coerced” to be subsumed by another class unexpectedly. For
example, if we set the domain ofhasTopping to bePizza, it is the same as entering
the axiom in Figure 8.

If we then add aChoc-icecream as shown in Figure 9 there are two possibilities. If
Pizza andIcecream are not disjoint12, thenChoc-icecream will be classified as a kind

12 assusmingChoc-icecream is subsumed byIcecream



of Pizza. If, on the other hand,Icecream is disjoint fromPizza, thenChoc-icecream
will be unsatisfiable. In either case, the reason for the classifier’s action is nowhere to
be seen in the definition ofChoc-icecream, Icecream or Pizza. It must be searched
for in thedomain restriction onhasTopping. In a large and complex ontology this can
be difficult.

Domain constraint
hasTopping domainPizza
Equivalent axiom
SubClassOf(restriction (hasTopping someValuesFromowl:Thing) Pizza)
Paraphrase:
Having a toppingimplesbeing Pizza.

Fig. 8. An axiom stating the domain of hasTopping is Pizza

OWL:
class (Choc-icecream partial
restriction(hasTopping someValuesFromChocolate))
Paraphrase:
All Choc-icecream havesomeChocolate topping.

Fig. 9. Description of Choc-icecream

After problems with open world reasoning, difficulties with domain and range con-
straints are the largest single source of errors and difficulty in our experience with new
users of OWL. Furthermore, checking domain and range constraints is more compli-
cated than in other languages, because a class may not satisfy a constraint prior to
classification may be inferred by the classifier to do so. Usually, but not always, such
behaviour is unintended and indicates an error. Current developments on the Protéǵe
-OWL-CO-ODE tools include options to warn of easily recognised situations in which
classification is likely to be affected by domain or range constraints.

5 Common logical issues

Most people learning to use OWL have little or no background in formal logic. In so
far as possible, we limit what needs to be known. However, there are a series of issues
which users find difficult and cause them to make errors:

1. “Only” ( allValuesFrom) does not imply “some” (someValuesFrom).
2. Difference between the linguistic and logical usage of “and” and “or” often cause

confusion.



OWL:
class (EmptyPizza partial
Pizza
complementOf (restriction (hasToppings someValuesFromowl:Thing)))
Paraphrase:
An empty pizza isanypizza which,amongst other things, doesnot have
anything as topping.

Fig. 10.Definitions of an EmptyPizza.

3. Class definitions involving onlyallValuesFrom can be trivially satisfiable; this is
usually the result of error but is easy to miss.

4. It is easy to confuse the representation of “some not” and “not some”.

Each issue will be discussed in turn, although confusion over one is often com-
pounded by confusion over another, particularly with respect to issues 1) and 2).

5.1 “Only” does not imply “some”: Universal (allValuesFrom) restrictions can
be satisfied trivially

The definition for an “EmptyPizza” (Figure 10) satisfies the definition for aVegetar-
ian pizza - it does not have anyMeat or Fish toppings.

There is nothing inconsistent about a restriction that includesallValuesFrom
owl:Nothing. It just means that, for the property in question, no values are allowed.
Therefore, universal (someValuesFrom) restrictions can be “trivially satisfied” –i.e.
satisfied by the trivial case in which there is no value at all for the property in question.
The only way a universal (allValuesFrom) restriction can be made inconsistent is by
there being some,i.e.at least one, value which contradicts it.

Note that by contrast, a restriction equivalent tosomeValuesFrom owl:Nothing
is always inconsistent since the definition ofowl:Nothing is that no value can be from
owl:Nothing.

5.2 Linguistic vs Logical use ‘and’ and ‘or’

In common linguistic usage, “and” and “or” do not correspond consistently to logical
conjunction and disjunction respectively. This is a common problem familiar to ev-
eryone who uses query languages, the more advanced features of search engines or to
anyone who programs. “Find all of thePizzas containingFish andMeat “ is ambigu-
ous as to whether the request is for pizzas containing bothFish andMeat or either
Fish or Meat. In other contexts we disambiguate the expression to use disjunction for
“and”. In response to instruction to “Find all the meat pizzas and fish pizzas and mark
them as spoilt”, most people would look for all pizzas which contained either meat or
fish. Common though this problem is, it often causes confusion in those learning OWL.
Definitions such as the first one in Figure 11 are not uncommon.



5.3 Trivially satisfiable class definitions are easy to miss

Sinceowl:Nothing is equivalent to any contradiction, confusion over “and” and “or”
can lead to definitions which are consistent but only trivially satisfiable. Since they are
not flagged as unsatisfiable, such errors often go undetected for some time. Consider
the definitions in Figure 11 which are not uncommon in new users’ exercises. After
running the classifier, newusers are surprised to findProteinLoversPizza classified
underVegetarianPizza as well as underMeatyPizza.

The rules for paraphrasing are designed to minimize these errors. If “A and B” is
paraphrased to “both A and also B”13 and “A or B” is paraphrased to “A and/or B”, the
confusion is reduced.

The frequency with which we have encountered these errors in practical workshops
and modules has motivated debugging options which:

– Check at classification time for universal restrictions with unsatisfiable fillers
– Indicate all unsatisfiable fillers in red in the restriction definition pane even if the

restriction, taken as a whole, is satisfiable14.

OWL:
class (ProteinLoversPizza complete
Pizza
restriction(hasTopping allValuesFrom (Meat andFish)))
Paraphrase:
A ProteinLoversPizza isanyPizza that,amongst other things, hasonly topping
that arebothmeatandalso fish.

OWL:
class (MeatyPizza complete
(Pizza
restriction(hasTopping allValuesFromMeat)))
Paraphrase:
A MeatyPizza isanypizza which,amongst other things, hasonly toppings that
are Meat.

Fig. 11. Incorrect definition of ProteinLoversPizza which is trivially satisfiable and hence classi-
fies under both MeatyPizza and VegetarianPizza

5.4 Confusion of “some not” and “not some”

It is not uncommon for students to form definitions such as those in Figure 12. Many
pizzas classify underVegetarianPizza wrong since most contain some topping which
is notFish and also contain something which is notMeat. The paraphrase makes the
error in the placement of the negation clear. One of the requirements for tools remains
to making negation of restrictions as easy as negation of their fillers.

13 We have even had suggestions for the stronger “simultaneously A and also B”
14 The second is still in development at time of writing.



OWL:
Class(VegetarianPizzaV4 wrong complete
Pizza
restriction(hasTopping someValuesFrom notMeat)
restriction(hasTopping someValuesFrom notFish)
Paraphrase:
A vegetarian pizza isanypizza which,amongst other things, both hassome
topping which isnot meat and also hassometopping which isnot fish.

Fig. 12.. Incorrect definition of vegetarian pizza confusing “some not ...” with “not some ...”

5.5 The benefits of clear definition - “What does it mean: to be a Pizza?”

Up to this point we have put no restriction on what counts as aPizza. Do all pizzas
have to have a base? toppings? Is a pizza base without a topping aPizza? Is anything
with aPizzaBase andPizzaToppings aPizza? Can we completely define aPizza?

There is no one right answer to these questions; they depend on our conceptual-
ization ofPizzas. However, most users are reluctant to regard a bare base, or a pizza
without a base,as a pizza. So the most common outcome is that shown in Figure 13.

Note that if this definition is used, then the ProteinLoversPizza in Figure 11 is un-
satisfiable, because the restriction that all pizzas must have a topping contradictsre-
striction(hasTopping allValuesFrom(Meat and Fish). Entering definitions and early
helps catch errors due to restrictions that would otherwise be trivially satisfiable.

OWL:
class (Pizza partial
restriction(hasBase someValuesFromPizzaBase)
restriction(hasTopping someValuesFromPizzaTopping))
Paraphrase:
All pizzas,amongst other things, both havesomebase that is a Pizza base and
also havesometopping that is a Pizza topping.

Fig. 13.Description (partial definition) of a pizza

6 Patterns: Values, Value Types, and “Untangling”

6.1 Values and Value Types

The examples to this point have dealt with what various authors call “first class entities”,
“independent entities”, or “sortals” [4, 16], and what we prefer to call “Self-Standing
entities” [10] and the relations between them. These correspond roughly to nouns and
verbs in ordinary language. However there are many modifiers or “refiners” - roughly
adjectives and adverbs in ordinary language - to account for. In object oriented design
these are often represented as “attributes” that are entirely internal to objects (as indi-
cated by their appearing inside the box in UML diagrams). It comes as a surprise to



many newcomers to OWL that there is no corresponding distinction between “relation”
and “attribute” in the formalism itself. The distinction is left to ontological patterns.

The requirements pattern for values and value types are that:15

1. There should be a functional property for each value type.
2. The values for each value type should be disjoint - it should not be possible for

something to beBland and alsoHot.
3. The possible values for the value type are exhaustive - so that if we choose to say

that the values forSpiciness areBland, Mild, Medium, andHot, then those are
the only values.

Meeting these requirements requires a sequence of six operations:

1. Create a functional property, e.g.hasSpiciness
2. Create a subclass of value type, e.g.SpicinessValueType
3. Create the individual values as subclass of the value type, e.g.Bland, Mild, Medium,

Hot
4. Make the values disjoint using a disjoint axiom
5. Make the values exhaustive by creating a subclass “covering” axiom, e.g.Spici-

nessVT subclass-ofBland or Mild or Medium or Hot
6. Set the range of thehasSpiciness property to the spiciness value typeSpiciness-

ValueType

Students have little trouble understanding these operations in principle, but the num-
ber of steps leaves many opportunities for mistakes in practice.

Fig. 14. Tangled First
Draft Pizza hierarchy

One of the first requirements for the Protéǵe -OWL-CO-
ODE interface was that it take users through the steps semi-
automatically via a “wizard”.

6.2 “Untangling”

The Ontology in Figure 1 is not, in fact, usually the first
that students produce. Rather, most students initially produce
something more like that shown in Figure 14.

We advocate a policy in which primitives form a skeleton
of pure trees,i.e.have exactly one primitive parent. When mul-
tiple hierarchies appear in first drafts of the primitive hierarchy,
as with SpicyTopping above, they must beuntangled– i.e.
an explicit characteristic found to differentiate the child con-
cepts from all but one of the primitive parents. There are many
advantages to this policy, which corresponds closely to tradi-
tional Aristotelian notions of “differentia”, but the overwhelming practical engineering

15 Some may question that we represent values as classes rather than individuals. On philosophi-
cal grounds, there is an argument to be made for either choice. However, existing reasoners for
OWL cannot deal with the all required reasoning using individuals. Therefore, representing
values as classes the only practical alternative. (We would also advocate the use of classes on
philosophical grounds, but that is an argument for another paper.)



advantage is that it makes it possible to make ontology more modular [10] because the
hierarchy of primitives can be split into disjoint branches at any point.

“Untangling” can involve either ordinary relations or value types, but is most sim-
ply illustrated with value types. Consider the aboveSpicenessVT along with an anal-
ogously definedFatcontentVT, with valuesLowFat, MediumFat, HighFat.

It is then only necessary to assign the correct values to the various ingredients and to
replace any primitives such asSpicyTopping with a corresponding defined classSpicy-
Topping. A visualisation of the pre-classification hierarchy, which is a strict tree, and
the post classification polyhierarchy includingLowFatTopping are shown in Figure 15.

Again, the mechanics can be tedious, so an extension of the value type wizard is
being developed to guide users through the process and to warn of possible errors. In
ontologies of any size, it is rare that the classifier does not infer new subsumptions
missed by students when they created the hierarchy manually.

6.3 Converting primitive classes to defined classes

There is an unexpected complication to the above scenario. In the course of untangling,
primitive classes are reformulated as defined classes. However, there may be restrictions
in the description16 of the primitive class that do not form part of its new definition but
remain merely necessary implications. For example, the ontology might have contained
a restriction that hot ingredients were unsuitable for children as shown in Figure 16.
Clearly this restriction is not part of the necessary and sufficient conditions defining
SpicyTopping, rather it is a further necessary condition to be inferred whenever some-
thing is found to be aSpicyTopping.

Such residual necessary implications must be converted to subclass axioms, as
shown in Figure 16, which requires significant syntactic change. These changes are re-
flected in the OilEd interface, where subclass axioms are entered on a separate “tab” and
not visible when the main class definition tab is selected. A major goal of the Protéǵe
-OWL-CO-ODE interface has been to make this transition easy by placing necessary
and sufficient conditions and necessary conditions in adjacent subpanes and allowing
drag and drop/cut and paste operations between them (See Figure 18).

7 Summary

Using any logic-based ontology language presents new users with significant problems,
often made worse by details of the language and user interface. The open world as-
sumption and the representation of domain and range constraints as logical axioms run
counter to most new users’ experience.

In this paper we have described errors commonly made in a series of workshops,
tutorials, and teaching modules. A prime goal is to help users understand the precise
meaning of OWL-DL through questions and paraphrases. It is a difficult task in natural
language generation to specify the paraphrases completely, but the basic forms are sum-
marized in Table 1 with their rationale, and the examples throughout the paper should

16 For this reason we dislike the use of the phrase “partial definition” and prefer the term “de-
scription”.



(a) Initial hierarchy

(b) Classified hierarchy

Fig. 15.Pizza hierarchy



OWL:
class (SpicyTopping partial
not (restriction(isUnsuitable someValuesFromSmallChild)))
Paraphrase:
All SpicyToppings arenot suitable for any small child.
OWL:
class (SpicyTopping complete
PizzaTopping
restriction(hasSpiciness someValuesFromSpicy))
SubclassOf (SpicyTopping
(not restriction(isUnsuitable someValuesFromSmallChild)))
Paraphrase:
A SpicyTopping is anypizza topping which has spiciness valueSpicy; all
Spicy toppings are not suitable for any small child.

Fig. 16.Conversion of a primitive class with a restriction to a defined class in which the restriction
does not form part of the definition requires that the restriction be reformulated as an axiom.

1. Always paraphrase a description or definition before encoding it in OWL,
and record the paraphrase in the comment area of the interface.

2. Make all primitives disjoint - which requires that primitives form trees
3. UsesomeValuesForas the default qualifier in restrictions
4. Be careful to make defined classes defined – the default is primitive. The

classifier will place nothing under a primitive class (except in the presence
of axioms /domain/range constraints)

5. Remember the open world assumption. Insert closure restrictions if that is
what you mean.

6. Be careful with domain and range constraints. Check them carefully if clas-
sification does not work as expected.

7. Be careful about the use of “and” and “or”(intersectionOf, unionOf)
8. To spot trivially satisfiable restrictions early, always have an existential

(someValuesFor) restriction corresponding to every universal (allValuesFor)
restriction, either in the class or one of itssuperclasses(unless you specifi-
cally intend the class to be trivially satisfiable).

9. Run the classifier frequently; spot errors early

Fig. 17.Brief summary of guidelines

make their usage clear. A brief summary of guidelines for avoiding the most common
pitfalls in building ontologies in OWL-DL are given in Figure 17.

This experience is also strongly influencing the design of new user interfaces. A
screen shot of the basic Protege-OWL class screen is shown in Figure 18. Preliminary
experience is encouraging, but to what extent these new features reduce new users’
confusion remains to be proven in practice.



OWL definition Paraphrase Rationale
Class(Thing partial ... All Things ... Primitive vs Defined
Class(Thing complete parent...A Thing is any Parent that ...Defined vs Primitive
(add to all descriptions ...amongst other things... Open world hypothesis
and definitions)
allValuesFrom only often misunderstood
someValuesFrom some brevity and clarity
and both... and also minimise logic errors
not( ... and ...) not all of / minimise logic errors

not both ... and also
not ( ... or ... ) neither ... nor ... minimise logic errors
someValuesFrom not has some ... that are not ...minimise logic errors
not (someValuesFrom ...) does not have ... any minimise logic errors
AllValuesFrom not has ...no ... / minimise logic errors

has only ...that are not ...
not (allValuesFrom ...) does not have ... only minimise logic errors
subclassOf(A , B) A implies B clarify use of subclass for

implication

Table 1.Summary of paraphrases. Examples in Figures throughout paper
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