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Abstract

The ability to generalize over naturally occurring variation in cues indicating food or preda-

tion risk is highly useful for efficient decision-making in many animals. Honeybees have

remarkable visual cognitive abilities, allowing them to classify visual patterns by common

features despite having a relatively miniature brain. Here we ask the question whether gen-

eralization requires complex visual recognition or whether it can also be achieved with rela-

tively simple neuronal mechanisms. We produced several simple models inspired by the

known anatomical structures and neuronal responses within the bee brain and subsequently

compared their ability to generalize achromatic patterns to the observed behavioural perfor-

mance of honeybees on these cues. Neural networks with just eight large-field orientation-

sensitive input neurons from the optic ganglia and a single layer of simple neuronal connec-

tivity within the mushroom bodies (learning centres) show performances remarkably similar

to a large proportion of the empirical results without requiring any form of learning, or fine-

tuning of neuronal parameters to replicate these results. Indeed, a model simply combining

sensory input from both eyes onto single mushroom body neurons returned correct discrimi-

nations even with partial occlusion of the patterns and an impressive invariance to the loca-

tion of the test patterns on the eyes. This model also replicated surprising failures of bees to

discriminate certain seemingly highly different patterns, providing novel and useful insights

into the inner workings facilitating and limiting the utilisation of visual cues in honeybees.

Our results reveal that reliable generalization of visual information can be achieved through

simple neuronal circuitry that is biologically plausible and can easily be accommodated in a

tiny insect brain.
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Author Summary

We present two very simple neural network models based directly on the neural circuitry

of honeybees. These models, using just four large-field visual input neurons from each eye

that sparsely connect to a single layer of interneurons within the bee brain learning cen-

tres, are able to discriminate complex achromatic patterns without the need for an internal

image representation. One model combining the visual input from both eyes showed an

impressive invariance to the location of the test patterns on the retina and even succeeded

with the partial occlusion of these cues, which would obviously be advantageous for free-

flying bees. We show that during generalization experiments, where the models have to

distinguish between two novel stimuli, one more similar to a training set of patterns, that

both simple models have performances very similar to the empirical honeybee results.

Our models only failed to generalize to the correct test pattern when the distractor pattern

contained only a few small differences; we discuss how the protocols employed during

training enable honeybees to still distinguish these stimuli. This research provides new

insights into the surprisingly limited neurobiological complexity that is required for spe-

cific cognitive abilities, and how these mechanisms may be employed within the tiny

brain of the bee.

Introduction

Honeybees (Apis mellifera) display an impressive visual behavioural repertoire as well as

astounding learning capabilities. Foragers rely on visual and olfactory cues identifying reward-

ing flowers. Being able to recognise informative cues displayed by flowers can be assumed to

facilitate fast and efficient decision-making. Indeed, honeybees can be trained to discriminate

by an impressive range of visual cues; symmetry [1–3], arrangements of edges [4–6], size [7, 8],

pattern disruption [9] and edge orientation [10–12]. These abilities are all the more impressive

since trained bees are able to apply these same learnt cues to patterns which may have little or

no resemblance to the original training patterns, so long as they fall into the same class of e.g.

plane of symmetry, or edge orientation.

This rich visual behaviour despite a relatively tiny brain makes honeybees an ideal model

species to explore how visual stimuli are processed and to determine if generalization requires

a complex neuronal architecture. Using the published intracellular recordings of large-field

optic ganglia neurons to achromatic stimuli [13, 14] and the known anatomical morphologies

of mushroom body (learning centres) class II ‘clawed’ Kenyon cells [15] we designed two sim-

ple, but biologically inspired models. These models were not created, or indeed in any way

‘tweaked’ to replicate performance at any particular visual task. Instead they attempt to explore

how well, or poorly, the known neuronal types within the bee brain could solve real behaviou-

rally relevant problems and how much neuronal complexity would be required to do so. The

initial models presented here were therefore kept very basic with limited neuronal pathways

and very simple synaptic connections from the optic lobes to the mushroom bodies. In addi-

tion, to comprehend how these optic lobe neuron responses alone may explain the bees’ dis-

crimination abilities and behavioural performance, we did not employ any form of learning in

these models. Since two of the optic ganglia (medulla and lobula) of bees extend a variety of

axonal fibres to both the ipsilateral and the contralateral mushroom bodies and, as opposed to

axons from different regions of the optic lobes that are distinctly layered within the mushroom

bodes, there is no apparent segregation of the visual inputs from the individual corresponding

left and right eye regions [16, 17], we tested the discrimination and generalization performance
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difference between retaining independent inputs from each eye and combining the neuronal

input from both eyes within our simulated mushroom body models. These models allowed us

to simulate achromatic pattern experiments and compare the simulation performances of our

two different bee-brain models—henceforth called ‘simulated bees’, to the performance of

actual honeybees in these same specific experiments.

We drew on twenty-four experiments from three published honeybee behaviour papers

[18–20] providing results on both the discrimination abilities of free flying bees perceiving

complex bar and spiral patterns from a distance, and their generalization abilities while fixat-

ing, slow hovering scans 1–5cm in front of presented patterns.

The surprising ability of one of our extremely simple simulated bees to discriminate pat-

terns correctly even with the partial occlusion of the test stimuli, its invariance to the location

of the visual cues on the eyes, and generalization performances almost identical to real bees,

provides new insights into the relationship between behaviour complexity and its neural cir-

cuitry underpinnings, significantly contributing to our understanding of the fundamental

requirements needed for specific cognitive abilities.

Results

To evaluate the performance of our models, we simulated the theoretical responses of mush-

room body Kenyon cells [16, 21] to a range of achromatic patterns previously used in honey-

bee behavioural experiments [18–20]. These particular experiments were selected primarily

because of the complexity of the patterns used, having variation in both the orientation and

length of the edges within small regions of the patterns. In addition, the chosen experiments

provided a broad range of behavioural results, including tasks bees found difficult or impossi-

ble to solve, and tasks with over 80% correct pattern selections.

Sensory input for our models was generated based on the known neuronal responses of

lobula (3rd optic ganglion) large-field orientation-sensitive neurons discovered in insects [13,

14]. These intracellular tuning curve recordings allowed us to calculate the theoretical

responses of eight lobula orientation-sensitive neurons (a type A and a type B neuron from the

upper and lower region of each eye) for each of the required experiment patterns. The firing

rate responses of these neurons were subsequently passed as inputs to the appropriate mush-

room body models’ Kenyon cells.

Given the apparent non-retinotopic distribution of visual inputs from the corresponding

left and right eye regions in the bee mushroom bodies [16], we created two models, which we

call “DISTINCT” and “MERGED”, to explore the effect of segregating or merging synaptic

connections from the lobula orientation-sensitive neurons originating from left and right eyes

onto individual Kenyon cells within the mushroom bodies.

The first of these models (DISTINCT) assumed that each Kenyon cell within the simulated

bee’s brain would receive distinctly segregated lobula inputs originating from either the left or

the right eye. This was further segregated into either the dorsal or ventral half of that visual

field, as implicated in behavioural [12], neuroanatomical [16] and neurophysiological [17]

studies. Fig 1 shows a schematic example of four of the DISTINCT model’s Kenyon cells (red

neurons), these receive a variety of excitatory and inhibitory synaptic connections from type A

and type B lobula orientation-sensitive neurons (see Methods), but each Kenyon cell has lobula

neurons which all originate from either the dorsal or ventral region of just one eye.

The second model (MERGED) used the exact same lobula neuronal inputs but was

designed such that its individual Kenyon cells would always receive input from both the left

and right eyes. Again we assumed a distinct segregation of the dorsal and ventral halves of

each eye’s visual field. To keep the model simple, and allow us to compare the respective
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models’ Kenyon cell responses, we established respective pairs of type A and type B orienta-

tion-sensitive neuronal inputs. This was done in such a way that if, for example, a Kenyon cell

received an excitatory input from a type A originating from the ventral-left eye and an inhibi-

tory type B synapses also from the ventral-left eye, it would have to have the respective excit-

atory type A synapses and an inhibitory type B synapse originating from the ventral-right eye

lobula orientation-sensitive neurons (see Fig 1).

The above models allowed us to simulate the Kenyon cell responses to particular patterns.

To assess the performance of these models solving discrimination or generalization problems,

and to compare with the honeybee empirical results, we made the following assumption. The

honeybee choice selection (which of two test patterns the bee would choose during an experi-

mental evaluation trial) would be dependent on the similarity of that bee’s Kenyon cell

responses to a learnt rewarding pattern presented during training trials, and the respective

Kenyon cell responses to each of the subsequently presented test stimuli (similar to how olfac-

tory learning in the mushroom bodies is thought to rely on the coincidence detection of Ken-

yon cell responses [22]). By this supposition, the honeybee should more often choose the test

pattern that has the greater similarity of Kenyon cell responses to the rewarding training pat-

tern, and furthermore the correct choice performance should depend on the relative difference

of the two test patterns from this training pattern (see Methods).

All our simulations were therefore composed of three patterns; for each experiment’s simu-

lation the rewarding pattern was the same as an original rewarding pattern presented to the

honeybees during training. The correct test stimulus was the pattern that the real honeybees

chose most often during the original behavioural evaluation trial and therefore should be “pre-

ferred” by our simulated bees also. The other test stimulus was therefore the incorrect pattern

that the bees visited least often during their trials. The ratio of the differences in the Kenyon

Fig 1. Schematic representation of DISTINCT and MERGED models. Representation of how the lobula

orientation-sensitive neurons (LOSN) connect to each models’ Kenyon cells. The DISTINCT model’s

Kenyon cells (red neurons) receive LOSN inputs from just one quadrant of the visual field, either the dorsal or

ventral half of the left or right eye. In this example the dorsal Kenyon cells each have an inhibitory (triangle)

LOSN type A synapse and three LOSN type B excitatory (circle) synapses (see Methods: Table 1 type 046).

The dorsal DISTINCT Kenyon cells in this example each have one excitatory type A and one inhibitory type B

synapse (see Methods: Table 1 type 001). The MERGED model Kenyon cells (green neurons) have the same

configuration types as the respective dorsal and ventral DISTINCT neurons, but this model combines visual

input originating from either the dorsal or ventral regions of both eyes; in the example the ventral MERGED

neuron has one inhibitory connection from a type A LOSN and three excitatory LOSN type B synapses from

the dorsal left eye and therefore must have the respective three excitatory type B and one inhibitory type A

synapses from the ventral right eye.

doi:10.1371/journal.pcbi.1005333.g001
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cell responses from the rewarding pattern to correct test pattern and rewarding pattern to

incorrect test pattern produced an individual experimental simulation trial ‘Kenyon cell simi-

larity ratio’. The average of these results over multiple simulation trials, per experiment, were

used to produce each model’s simulated bee’s overall experimental performance (see

Methods).

Thus, a simulated bee performance of approximately 50%, with individual simulation trial

Kenyon cell similarity ratios of�0.5, meant that there was a similar or greater similarity from

the rewarding pattern to the incorrect test pattern, rather than to the correct test pattern that

the honeybees chose most often. This was therefore assumed to be our models’ equivalent of

the bees’ inability to accurately discriminate or generalize to the test patterns. Similarly, an

average Kenyon cell similarity ratio of�0.6, resulting in a simulated bee performance of

�60% correct choices, indicated a greater Kenyon cell similarity between the presented

rewarding stimulus and correct test patters than to the incorrect pattern, and therefore our

simulated bees would be considered able to discriminate, or generalize to, the correct test pat-

tern. These calculations allowed us to compare our DISTINCT and MERGED simulated bee

performances to the respective honeybee correct choice percentages from the published litera-

ture [18–20].

Experiment set 1: Discrimination

The ability to discriminate between visual patterns is essential for honeybees allowing them to

identify familiar flowers and landmarks while navigating on foraging trips and locating the

correct hive entrance upon their return. Nonetheless even for these types of precisely defined

visual stimuli, some form of location invariance of a stimulus on the retinae would undoubt-

edly be required, as it is unlikely bees would perfectly align the stimulus against their eyes on

every single flight in order to make a discrimination decision. Indeed it would be an undesir-

able necessity that they should have to do so.

To test our two models (DISTINCT, MERGED) for the effect of location of the stimuli

within the visual field, we simulated the experiments of Zhang and Horridge [18] who

explored the ability of freely flying honeybees to discriminate two large (24cm diameter) verti-

cally displayed patterns composed of multiple oriented bars. For these experiments, a bee’s pat-

tern choice was recorded when it approached within 27cm of either pattern (see [18] for

apparatus description). Presuming that honeybees would learn the correct pattern features

when feeding at, or being close to, the centre of a rewarding pattern, we first calculated our

Kenyon cell responses to these same rewarding patterns. We next determined each of our sim-

ulated bees’ performance accuracies when any of the two given test stimuli patterns (correct

pattern was identical to the rewarding pattern, the incorrect pattern was a rotated or mirrored

version of this rewarding pattern) were offset horizontally between -200 pixels and +200 pixels

in 25 pixel increments. A zero pixel offset would align the pattern perfectly in the centre of the

field of view with half the pattern visible in each eye. Whereas a ±75pixel horizontal offset

would remove the whole pattern from one eye’s visual field, and at ±200 pixels leave only a

small portion of the pattern visible in just one eye (Fig 2).

With zero offsets of the correct and incorrect test patterns, we found that the DISTINCT

simulated bee was able to discriminate all of the presented pattern pairs. Indeed, despite its

simplicity, the model design allowed it to outperformed real honeybees whose best result was

67% compared to DISTINCT simulated bee’s 78% accuracy for the same pattern pair (Fig 2).

This model bee also discriminated the two pattern pairs that real honeybees failed to discrimi-

nate (spiral patterns—bee: 53.7% p>0.7 n = 54 [18]–DISTINCT: 67%, octagonal patterns—

bee: 56.4% p>0.2 n = 140 [18]–DISTINCT: 74%, see Fig 2).
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The MERGED simulated bee results were far lower than the DISTINCT model’s discrimi-

nation accuracies but compared better to that of the experimental results. As with real honey-

bees’ behaviour, the MERGED simulated bee did not reliably discriminate the spiral and

octagonal pattern, achieving simulation results of just 53% (bee: 54%) and 57% (bee: 56%)

respectively. Out of the seven tested pattern pairs the only notable difference from the beha-

vioural results was the MERGED bee’s inability to discriminate the two left / right reversed

pattern pairs yielding only 49% and 52% respectively (Fig 2). Here honeybees achieved 62%

and 65% in the behavioural experiments.

Clearly the simpler model (DISTINCT) returned more accurate discrimination results and

outperformed both the more derived model (MERGED) and the honeybees. Our results raise

the interesting question why the honeybees performed so poorly on some of the patterns,

Fig 2. Model results for experiment set 1. Exemplary summary of honeybee behaviour and model performance for the

discrimination tasks. In the behavioural experiments [18] different groups of honeybees were differentially trained on a particular pattern

pair, one rewarding (CS+) and one unrewarding (CS-). (a) Blue diamonds: honeybee result, percentage of correct pattern selections after

training. Red squares: performance accuracy of the DISTINCT simulated bee when test stimuli were presented in the centre of the field of

view. Green triangles: performance accuracy of the MERGED simulated bee for the centralised stimuli. Error bars show standard deviation

of the Kenyon cell similarity ratios (as a percentage, and centred on the simulated bee performance value; which was equivalent to average

Kenyon cell similarity ratio over all simulation trials). Standard deviations were not available for the behaviour results. Small coloured

rectangle on x-axis shows the corresponding experiment colour identifiers in (b, c). (b, c) Performance accuracy of the DISTINCT (b) and

MERGED (c) simulated bees when comparing the rewarding patterns (CS+) with the corresponding correct (TSCOR) and incorrect (TSINC)

pattern pairs when these patterns were horizontally offset between 0 and ±200 pixels in 25 pixel increments (see d). Colour of region

indicates the corresponding experiment in (a), performance at 0 horizontal pixel offset in (b), (c) is therefore also the same corresponding

DISTINCT or MERGED result in (a) (d) Example of the correct and incorrect pattern images when horizontally offset by -200 pixels to 0

pixels, similar images were created for +25 pixels to +200 pixels. Experiment images were 300 x 150 pixels in size; patterns occupied a

150 x 150 pixel box cropped as necessary. Number in top right of each image indicates number of pixels it was offset by; these were not

displayed in actual images. Red dotted lines show how pattern was subdivide into the dorsal left eye, dorsal right eye, ventral left eye and

ventral right eye regions. Each region extended a lobula orientation-sensitive neuron of type A and a type B to the models’ mushroom bodies

(see Fig 1). The DISTINCT simulated bee performs much better than the MERGED model’s simulated bee and empirical honeybee results

when there is no offset in the patterns (a), but with only a small offset (±75 pixels) the DISTINCT simulated bee is unable to discriminate the

patterns (b) whereas the simulated bee based on the MERGED model is able to discriminate most of the patterns over a large range of

offsets (c).

doi:10.1371/journal.pcbi.1005333.g002
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when a very simple model (DISTINCT) was easily able to discriminate the patterns while

using just eight large-field orientation-sensitive neuronal inputs.

However, progressively offsetting the test patterns from the centre of the field of view

revealed the lack of robustness of the DISTINCT model to cue variation. Here the simulation

performances dropped much faster than that of the simulated bee using the MERGED model.

In fact with as little as ±75 pixel offset (where the whole pattern was still visible) the perfor-

mance of the DISTINCT simulated bee fell below 52% for all pattern pairs (Fig 2).

With the MERGED model, all discriminable patterns (>64% accuracy at 0 pixel offset) (still

achieved accuracies above 60% when the patterns were offset by ±75 pixel. Even when these

patterns were offset by as much as ±125 pixels rendering almost half of the patterns invisible

the model’s lowest simulated performance for these experiments was 57%—i.e. markedly more

than for the DISTINCT model. Beyond this offset distance, only the one pattern pair (crosses,

see Fig 2) was effectively discriminated, at a level of�59% accuracy during simulations even

when only small portions of the patterns were still visible.

Our results show that by simply combining inputs from both the left and right eyes onto

mushroom body Kenyon cells, discrimination abilities are effectively freed of requiring perfect

cue alignment on the retinae. Although this reduces the maximal discrimination accuracy, it

allows for a much more robust and versatile employment of this cognitive tool in most realistic

free flight navigation and resource locating scenarios.

Experiment set 2: Generalization

Experienced honeybee foragers may identify rewarding flowers based on those features that

most reliably predict reward amongst the available flower species. Honeybees able to generalize

to this limited feature set would reduce the need to learn all the exact features (or indeed pho-

tographic templates) of each individual flower type visited and subsequently having to best-

match these numerous complex templates when foraging on novel or less frequented floral

resources [10, 20, 23].

To explore these generalization abilities, Stach et al. [19, 20] trained honeybees on two sets

of six patterns where within each set there were similarly orientated bars in each quadrant of

the patterns (Fig 3). They then tested the bees’ ability to generalize from these training patterns

to novel variations of the patterns. Unlike the previous experiments, these bees were able to fix-

ate a small distance from the pattern before their final choice selection was recorded when

they actually touched either of the two test patterns. For our simulations we therefore pre-

sented all the patterns in the centre of the field of view with zero horizontal, or vertical, offset

applied, assuming this would be where a honeybee would make its final decision.

Fig 3 shows the experiments we simulated and the corresponding honeybee experimental

results [19, 20]. The overall average difference from the simulation performance of all 17 gen-

eralization experiments to the corresponding empirical results for the DISTINCT model’s sim-

ulated bee was -9.83% and just -7.77% for the MERGED model’s simulated bee. However, as a

direct correlation comparison of the model performances and behavioural results is not appro-

priate (see Methods), we followed the approach of the original studies [19, 20] and compared

the model results against the experimental performances within smaller batches of similar gen-

eralization type tasks.

Our first batch of experiments, using patterns from Stach et al. 2004 [19], tested simple gen-

eralization from the training sets of six patterns to three novel pattern pairs. The experimen-

tally preferred test stimulus patterns had bars orientated in the same direction as the

corresponding quadrants of the rewarding training patterns, versus the incorrect distractor

patterns with a similar visual style to the matching correct test pattern but with bars orientated

Bio-inspired Neural Network Helps Explain Honeybee Visual Generalization
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in different directions to those of the rewarding pattern in each quadrant. We found that simu-

lations of both the DISTINCT and MERGED models produced simulated bee results almost

identical to the honeybee behavioural results (Fig 3). Both the percentage of honeybee correct

choice selections for correct test patterns and our simulated bees’ performances were all

between 67% and 72%.

Our second batch of experiments again followed the study of Stach et al. [19], here the cor-

rect patterns had three quadrants with correctly orientated bars and the final quadrant did not,

the incorrect test patterns had incorrectly oriented bars in all four quadrants. The DISTINCT

model achieved�58% throughout but performed typically 5–10% below the honeybees (Fig

3). The simulated bee based on the MERGED model outperformed the simulated bee of the

DISTINCT model on all test pattern pairs with simulation performances ranging from 61–

72%, once again extremely similar to that of the honeybee behavioural result range of 65–74%.

In our third batch of experiments utilizing the same Stach et al. dataset [19], the correct and

incorrect test stimuli were very similar, the correct patterns having correctly oriented bars in

all four quadrants and the incorrect patterns had just one quadrant with incorrectly oriented

bars. Simulations of the MERGED model failed to allow its bee to generalize to the correct

Fig 3. Model results for experiment set 2. Summary of honeybee behaviour and model performance for the generalization tasks.

(a) The two sets of quadrant patterns (each set having similarly orientated bars in each quadrant of the pattern) that were used during the

behavioural experiments [19, 20]). Honeybees were trained on random pairs of a rewarding pattern (CS+) and unrewarding pattern (CS-)

selected from the two pattern sets, different groups of bees were tested on the reversal such that the CS- pattern would become the CS+

and vice-versa. (b) Blue diamonds: honeybee result, percentage of correct choice selections when tested with novel patterns of varying

degrees of difference from the training patterns (here the correct pattern (TSCOR) is the pattern the bees visited most often). Red squares:

DISTINCT simulated bee performance when comparing each of the six rewarding patterns in a pattern set (a) against a novel test pattern

pair (TSCOR and TSINC). Green triangles: MERGE simulated bee results for the rewarding pattern sets compared against each test pattern

pair. Error bars show standard deviation of the Kenyon cell similarity ratios (as a percentage, and centred on the simulated bee performance

value; which was equivalent to average Kenyon cell similarity ratio over the all simulation trials). Standard deviations were not available for

the behaviour results. For simple generalisations (i) where the novel correct patterns had the similarly oriented bars to the rewarding pattern

set and incorrect test pattern was similar to the unrewarding training patterns the DISTINCT and MERGED simulated bee performances

were almost identical to those of the real honeybee results. For the harder generalisations; (ii) correct test pattern had one quadrant incorrect

—the incorrect test pattern had all quadrants incorrect, (iii) correct pattern had all quadrants correct—incorrect pattern had three quadrants

correct, (iv) mirror images and left-right reversals of the rewarding pattern layout, the simulated bee based on the DISTINCT model correctly

generalised all pattern pairs but performed substantially worse than the real bees. The MERGED simulated bee failed most experiments in

(iii) but did typically perform better than the DISTINCT bee in (ii) & (iv). Both simulated bees failed to generalise correctly if the correct pattern

was a chequerboard, whereas real honeybees typically rejected this novel stimulus.

doi:10.1371/journal.pcbi.1005333.g003
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pattern in three out of four experiments, with individual simulation trials failing to achieve a

Kenyon cell similarity ratio of more than 0.5 (Fig 3). The DISTINCT simulated bee managed

to correctly generalize all of these patterns but with low accuracy of just 56% to 60%; the corre-

sponding honeybee results ranging from accuracies of 63% to 73%.

Our fourth experiment set was compiled by taking test pattern pairs from the earlier work

of Stach and Giurfa [20]. In this study, honeybees were presented with different combina-

tions of either the original rewarding training pattern configuration, or the mirror image, or

the left / right reversal of this layout. The DISTINCT model’s simulated bee was once again

able to generalize correctly to all the experimental patterns (Fig 3). Although performing less

well than real honeybees, the model showed similar lower generalization performances on

the mirror image versus left-right patterns (56%) compared to that of the original rewarding

pattern versus the mirror image patterns (62%). The MERGED simulated bee typically

achieved higher accuracies that were more similar to the honeybee results than that of the

DISTINCT model’s bee, correct generalization performances ranged from +1% to -12% dif-

ferent to the empirical result. Of note, the bees achieved a surprising 82% correct choice

accuracy on one of these test pattern pairs almost 10% higher than any other task, our models

had high results on this experiment (DISTINCT: 62%, MERGED: 66%) but we did not see

these particular simulations outperform all others. Only two of the eight test pattern pairs

(correct stimuli: original configuration, incorrect stimuli: left / right reversal) failed to gener-

alize correctly with a performance of just 51% (individual simulation trial Kenyon cell simi-

larity ratios ranging from 0.39 to 0.62 dependent on the particular pattern triplets presented)

compared to the honeybee correct choice selection of 69%. During simulations both the DIS-

TINCT and MERGED simulated bees showed a preference for the left / right reversal config-

uration compared to the mirror image pattern, they also preferred the correct configuration

to the mirror image layouts, as did real honeybees (Fig 3).

The last of our experiment sets, again used patterns from Stach and Giurfa (2001) [20]. Fig

3 shows that both types of simulated bees were unable to generalize when presented with a che-

querboard distractor pattern, with individual trial Kenyon cell similarity ratios as low as 0.4

(i.e. ‘preferring’ the incorrect pattern). Conversely, honeybees always preferred left / right or

mirror image versions of the rewarding pattern configuration to that of the chequerboard

option with behavioural results of 65% and 74% respectively.

Despite our models’ extreme simplicity, they largely predicted the honeybees’ generaliza-

tion performances accurately for a majority of the tested pattern pairs. Our simulated bees did

fail to generalize when the two test patterns were very similar (Fig 3). However, whereas hon-

eybees were trained on both rewarding and unrewarding training patterns, our simulated bees

only perceived the rewarding stimuli. This may account for some of the honeybees’ additional

correct choice performance (see Discussion). Nonetheless, these results indicate that seemingly

‘complex’ tasks do not require advanced cognition. Instead, our DISTINCT and MERGED

models provide evidence that visual pattern recognition and classification may in fact be the

emergent properties of connecting just a small number of large-field visual inputs.

Discussion

Apparently sophisticated cognitive abilities are often seen as a result of an equally complex

neuronal architecture. However, here, this view is fundamentally challenged. Despite honey-

bees having a tiny brain consisting of less than one million neurons (as compared to eighty-

six billion neurons in the human brain [24]), they still display an impressive range of cogni-

tive abilities from learning to recognise pictures of human faces [25–27] to simple counting

[28].
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Using a modelling approach, we investigated how bees’ ability to discriminate and general-

ize could be explained by simple neural networks. We have shown that for achromatic bar pat-

terns, regularly used in honeybee behavioural experiments, bees may actually require very little

sophistication in neuronal circuitry. The honeybee lobula orientation-sensitive neuron

responses are thought [13, 29] to be the result of the summation of smaller receptive field ori-

entation-sensitive neurons in the bee lamina or medulla (1st, 2nd optic ganglia), similar to

those found in other insect medullas [13, 14, 30–33]. This collation of smaller subunits allows

the lobula orientation-sensitive neurons to encode a simplified summary of the oriented edges

across the whole width of the bee eye. Although this means a bee cannot extract the exact reti-

notopic location or indeed orientation of individual edges through these neurons, our results

show that, surprisingly, just eight of these large-field lobula neurons would be sufficient for the

discrimination and generalization of the described patterns.

Our models also demonstrate, despite their simplicity, that just a single layer of simple con-

nections from the lobula orientation-sensitive neurons to the mushroom body Kenyon cells

would suffice to reproduce the empirical generalization results between a given rewarding pat-

tern and the two test patterns. In fact our models may have had a more difficult challenge than

that of real bees. During training the honeybees were exposed to both the rewarding patterns

with a sugar water reward but also an unrewarding (water) or even aversive solution (quinine)

on the training distractor patterns, this differential training would allow the bees to learn both

those features consistent with reward but also those pattern features that were to be avoided.

There is empirical evidence to show that choice accuracy as well as the pattern features learnt

by bees are affected by the training regime (e.g. absolute conditioning (no distractor pattern)

vs. differential conditioning [34, 35], and the penalty associated with a distractor [36–38].

Since it remains unclear how these different factors affect learning on the neuronal level, the

theoretical models described here used very simple mathematics to calculate the similarity of

the Kenyon cells responses to different stimuli, and from this produce theoretical simulated

bee performances. Although this is very different to how learning would take place within the

honeybee mushroom bodies, it did allow us to investigate how the lobula orientation-sensitive

neuron responses alone may affect the honeybees’ performance during different discrimina-

tion and generalization experiments. In addition, it allowed us to study how different connec-

tions of the lobula neurons and Kenyon cells may also affect performance. Given our models

employed no form of learning, it is all the more impressive that our simplified and experimen-

tally disadvantaged simulated brains were able to generate largely similar results to actual bees.

The Kenyon cell outputs of our models were achieved solely by the summation of either

excitatory or inhibitory connections from the lobula orientation-sensitive neurons (with pre-

defined configurations, and fixed synaptic weights of either +1 or -1 respectively). These simu-

lated Kenyon cell outputs allowed our simulated bees to discriminate and generalize the tested

patterns with approximately 50% activation of their Kenyon cell populations (due to the recip-

rocal lobula orientation-sensitive neurons to Kenyon cell connection types, see Methods); we

assumed, for comparison with our simple models, that some form of synaptic plasticity from

the Kenyon cells to the mushroom body extrinsic neurons would allow the bees to associate

the appropriate 50% active Kenyon cells to the rewarding training pattern, and from these

adjusted synaptic weights make the behavioural decisions. However, neuronal recordings of

the mushroom body lip, which receives olfactory input, shows just ~5% activation of the Ken-

yon cells mediated by a feedback inhibitory network in the mushroom body calyces [39]. It

may be that when honeybees visit a correct pattern they can increase the firing rate or reduce

the response latency of the Kenyon cells that fire, but potentially more importantly, may quies-

cent those Kenyon cells that incorrectly fired for the unrewarding, or punished, training pat-

tern (during differential training). In this case the 5% of the Kenyon cells that are active
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(assuming the same value as for olfactory stimuli) would potentially be optimal to associate the

rewarding stimulus with sucrose reward. Additional research is required to see if this greater

specificity would actually account for some of the honeybees’ higher performance over that of

our current models. It should be noted that ~50% of the olfactory projection neurons to the

mushroom bodies are highly active when a particular odour is presented [40] providing a pop-

ulation coding response to a given odour, this differs considerably to that of the optic lobe neu-

rons that typically have more specific firing rate tuning curve responses to particular stimuli.

Due to issues with harnessing bees during visual learning tasks we currently lack the ability to

record Kenyon cell responses for anything but the simplest visual stimuli (e.g. whole eye expo-

sure to a single colour [41]). Unfortunately this means we do not yet have empirical evidence

for the Kenyon cell activation level for visual stimuli. New research using walking bees in vir-

tual reality rigs [42] may allow these activation levels, and Kenyon cell response changes, to be

recorded during visual learning paradigms. These findings will undoubtedly provide vital

information for the next generation of theoretical models, which could be used to understand

the trial-by-trial learning process of bees.

Despite the limitations mentioned above, our simulated bees still performed almost identi-

cally to the real bees when making simple generalizations and only dropped in performance

when either the test patterns began to differ from the oriented edges presented in the reward-

ing patterns or the correct and incorrect test patterns became very similar (Fig 3). Here the dif-

ference in the honeybees’ exposure to the unrewarding as well as rewarding stimuli during

training almost certainly contributed to the typical 5–10% performance advantage compared

to our simulated bees, which only used the rewarding stimuli. Again, future behavioural and

electrophysiological research may reveal how training paradigms affect the learning on the

neuronal level, which would allow corresponding adjustments to the new theoretical models.

During the offset pattern discrimination simulations (Fig 2) we found that simply combin-

ing the neuronal firing rates of lobula orientation-sensitive neurons from each eye onto indi-

vidual Kenyon cells would allow for pattern discrimination with an impressive location

invariance of the perceived stimuli. By merging information from both eyes, a very coarse

representation of the whole 270˚ bee eye horizontal field of view can be produced. Surpris-

ingly, this non-retinotopic representation appears sufficient to discriminate quite complex

visual patterns, removing the need for the bees to have to store an eidetic or ‘photographic’

view of the pattern. As a pattern is offset from the centre of the field of view, such that it is visi-

ble in one eye more than the other (Fig 2), then the firing rates of all eight neurons (a type A

and a type B lobula orientation-sensitive neuron in each of the four visual field regions—dorsal

and ventral half of each eye) will adjust according to the oriented edges each region now per-

ceives. With the DISTINCT model, as the pattern is offset the changes in the total synaptic

input per Kenyon cell (compared to the zero offset pattern) are quite pronounced—as these

are directly influenced by the amount the lobula neurons response change due to the addition,

or removal, of oriented edges in each separate region. Therefore, the DISTINCT model’s dis-

crimination ability is impaired the further a pattern is offset. In contrast, with the MERGED

model, although the lobula-orientation sensitive neurons’ firing rates are the same as the DIS-

TINCT model, by combining the lobula neuron responses from the left and right eyes even as

the pattern is offset the total summated Kenyon cell values remain similar to the summated

values with no offset (at least until the patterns begin to leave the field of view of both eyes).

For example in the second generalization test the correct test stimuli had the orientation of

bars in one quadrant of original rewarding pattern rotated through 90˚ (Fig 3); here the DIS-

TINCT model had a whole quadrant producing incorrect Kenyon cell responses, whereas in

the MERGED model only a proportion of the whole dorsal or ventral field of view is altered

and thus a smaller number of Kenyon cells ‘misfire’.
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However, despite the typically good discrimination results over large offsets and the ability

to discriminate when patterns are only partially visible, our results show that this mechanism

may well come at the expense of discriminating certain types of stimuli. Complex spiral and

octagonal patterns (Fig 2) were not reliably discriminated by our simulated bee based on the

MERGED model or by real honeybees [18]. Surprisingly, honeybees have been shown unable

to discriminate a very simple pair of 90˚ cross patterns (incorrect pattern rotated through 45˚)

[11] (Fig 4), despite their apparent differences to a human observer. Simulations of these

experiments once again showed the MERGED model’s simulated bee’s closer similarity to the

honeybee behavioural results, with a sub 60% discrimination performance on these simple

cross patterns, whereas the DISTINCT simulated bee achieved over 70% accuracy. Interest-

ingly both of the simulated bees, and honeybees, were able to discriminate a pair of 22.5˚

rotated cross patterns easily (incorrect pattern rotated through 90˚) (Fig 4). It may well be that

in allowing the neuronal architecture of the honeybee brain to overcome location variance for

common stimuli, it has compromised its ability to discriminate specific, arguably less impor-

tant cue combinations.

In a few specific instances our MERGED simulated bee failed to discriminate the tested pat-

tern pairs, in contrast to the empirical results. The model’s inability to allow its simulated bee

to discriminate the left / right reversal patterns in experiment four and six of the discrimina-

tion experiments (Fig 2) and experiment four of the generalization experiments (Fig 3) was no

surprise as both the correct and incorrect test patterns presented the exact same orientations

only in the reverse eyes, and hence produced the same summated input to the Kenyon cells,

whereas the inability to discriminate the incorrect checkerboard pattern from the correct test

patterns (Fig 3) may be down to the lack of a predominant orientation in this stimulus causing

lobula orientation-sensitive neuron outputs which were equally dissimilar from the rewarding

patterns as the correct test patterns confusing the system. It is most likely that in these experi-

ments and while observing other similar stimuli the honeybees use other visual features (optic

flow, symmetry, etc.) to which our very simple models did not have access. In addition, the

Fig 4. Model results for cross pattern experiments. Summary of honeybee behaviour and simulated bees’ performance for the

discrimination of simple cross patterns. In the behavioural experiments [11] different groups of honeybees were differentially trained on a

particular cross pattern pair, one rewarding (CS+) and one unrewarding (CS-). Blue: honeybee result, percentage of correct CS+ pattern

selections after training. Red: performance accuracy of the DISTINCT simulated bee. Green: performance accuracy of the MERGED

simulated bee. Behaviour Error bars for honeybee shows standard deviation. Error bars for models shows standard deviation of the Kenyon

cell similarity ratios (as a percentage, and centred on the simulated bee performance value; which was equivalent to average Kenyon cell

similarity ratio over the all simulation trials). (a) Discrimination of 90˚ cross and 45˚ rotation of this pattern. The DISTINCT simulated bee

easily discriminates the patterns but honeybees cannot, the simulated bee based on the MERGED model achieved below 60% accuracy.

(b) Discrimination of a 22.5˚ cross pattern and the same pattern rotated through 90˚, both of the simulated bees and real honeybees can

discriminate these cross patterns.

doi:10.1371/journal.pcbi.1005333.g004
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poor concordance of the MERGED model simulated bee results and the honeybees in the gen-

eralization experiments may also result from the experimental paradigm that allowed the bees

to fixate on the pattern at close range and make their final decision from a fixed perspective.

This would, for these experiments, be very similar to the better-performing DISTINCT mod-

el’s simulated bee with zero stimuli offsets.

It is conceivable that honeybees have a combination of both DISTINCT and MERGED type

lobula orientation-sensitive neuron to Kenyon cell configurations within their mushroom

bodies. In this neuronally still simple scenario, attention-like processes could “selectively

learn” the Kenyon cell responses that are good indicators of reward in a given experimental

scenario. This might therefore account for some of the honeybees’ higher performance com-

pared to that of our simulated bees based solely on the MERGED or DISTINCT models.

Future work will investigate if there is an optimal distribution of distinct and merged lobula

orientation-sensitive neuron connections to the Kenyon cells, or if synaptic plasticity is able to

adjust the proportion of each connection type for a particular task. This modelling of bee visual

processing and synaptic tuning may then be able to provide additional insights for machine

vision applications where very lightweight computational solutions are required for object or

landmark recognition, such as next generation self-drive vehicles and autonomous flight

systems.

Our research shows that very simple neuronal connections, which would be easily accom-

modated within the miniature brain of a bee, are able to facilitate seemingly complex visual

cognitive tasks. In addition the merging of visual information from both eyes, as seen in the

mushroom bodies of bees [16], appears to be a very effective solution to partial occlusion and

retinal location invariant pattern discrimination.

Methods

Calculating lobula neuronal responses

The simulated lobula (3rd optic ganglion) large-field orientation-sensitive neurons used in our

models were derived from the Yang & Maddess (1997) study on the honeybee (Apis mellifera)

[13]. In these experiments, electrophysiological recordings where made from the lobula of

tethered bees placed in front of CRT computer monitors; stimuli of oriented bars moving

across one eye were presented at 30˚ angle intervals, in both the frontal and lateral eye regions.

These neurons responded to the oriented bars moving anywhere across the whole width of the

eye, but were maximally sensitive to orientations of 115˚ (type A) and 250˚ (type B) with angu-

lar half-widths of about 90˚. We produced best-fit curves to both the reported type A and type

B lobula orientation-sensitive neuron responses so that we could provide a theoretical neuro-

nal response to a fixed 280-pixel edge at any orientation (Fig 5).

Bees presented with two identically oriented bars simultaneously in both the frontal and lat-

eral regions of the eye generated lobula orientation-sensitive neuron responses that were

higher than for a single bar in either eye region but less than the summated responses [13]. A

similar nonlinear response was seen in dragonflies (Hemicordulia tau) [14] where the response

to an oriented moving bar would increase with the length of the presented bar. Assuming that

these honeybee lobula neuronal responses are due to a nonlinear summation of smaller orien-

tation detectors in the lower lobula or medulla, we used this more detailed response curve

recorded in the dragonfly to generate a best-fit scale factor curve for when the length of a pre-

sented edge increases (Fig 5). This allowed us to scale the lobula orientation-sensitive neuron

responses for any oriented edge based on its length compared to the fixed length used for our

LOSN tuning curves.
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To account for multiple edges at different orientations in any one image, we again presume

that the overall lobula orientation-sensitive neuron response is composed from smaller sub-

units in the medulla or early lobula and will vary with both the total length and abundance of

all oriented edges within the receptive field that that neuron receives information from. We

thus calculated the overall type A and type B responses for any given pattern using the edge

length histogram datasets for all four quadrants of that pattern (see below). For each quadrant

and each lobula orientation-sensitive neuron type, we summated the proportion (orientation

edge length / total edge length) of each edge orientation (0˚-180˚) and multiplied it by the neu-

ral response for that orientation on our standard 280 pixel edge curve (Fig 5). This total value

was then corrected by the scaling factor derived from the total edge length within that quadrant

(Fig 5). This produced a type A and type B response (Eq 1) for each quadrant of the visual field

(see Fig 6) and therefore eight lobula orientation-sensitive neuron responses in total for a given

pattern. These image specific responses were saved with the pattern’s unique identification

Fig 5. Schematic representation of the models. The pattern processing stages for the type A and type B lobula large-field

orientation-sensitive neurons (LOSN) and their connectivity to the mushroom body Kenyon cells. (a) Each simulated eye perceives

one half of the test image (left eye shown). Lamina: converts a given pattern image into a binary (black/white) retinotopic representation.

Medulla: extracts edges resolvable by honeybees and determines the length of all orientations (0˚-180˚) within the upper and lower image

halves. Lobula: within the upper and lower image regions, the LOSN firing rates for the type A and type B neurons are calculated (see Fig 6).

The same process is repeated for the right eye producing in total eight LOSN responses. These are then passed to the appropriate 10,320

(DISTINCT model) or 5,160 (MERGED model) mushroom body Kenyon cells. (b) Firing rate responses of our theoretical LOSNs (type A:

orange, type B: blue) to a 280 pixel edge at all orientations between 0˚–180˚; tuning curves adapted from honeybee electrophysiological

recordings [13]. (c) Scale factor applied to the LOSN firing rates dependent on the total edge pixel length in each pattern quadrant, nonlinear

scaling factor derived from dragonfly neuronal responses to oriented bars with differing bar lengths [14].

doi:10.1371/journal.pcbi.1005333.g005
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number (UID) and subsequently used as the sensory inputs to the Kenyon cells of our mush-

room body models.

LOSN Responseðx; qÞ ¼
X180

i¼1

Hðq; iÞ
P

HðqÞ
� Cðx; iÞ

� � !

� Sð
X

HðqÞÞ ð1Þ

Where LOSN: lobula orientation-sensitive neuron; x: LOSN type A or type B; q: visual field

quadrant 1:4; H: matrix of edge lengths for each orientation (1˚ increments) in each quadrant;

Fig 6. Worked example of LOSN calculations. Simplified example of the lobula orientation-sensitive neuron (LOSN) type A and

type B firing rate response calculations. (a) Here we calculate values for just the left dorsal eye (quadrant 1) with only horizontal (0˚) and

vertical (90˚) edges presented. In the single horizontal bar example (top) 75% of the overall edge length is at a 0˚ orientation (600 pixels out

of total edge length of 800 pixels) and 25% of the edges at 90˚ orientations, thus the LOSN responses are influenced more by the response

curve values at 0˚ than 90˚. Conversely, the vertical bar is influenced more by the response curve values at 90˚, resulting in overall higher

LOSN firing rates. The two horizontal bars example (bottom) has the same proportion of orientations as the single horizontal bar (top).

Although the total edge length is doubled, the LOSN firing rates are not twice as high; instead they are scaled using the non-linear scaling

factor derived from dragonflies (see Fig 5 and Eq 1). Note that the LOSN type A firing rate is the same for a single vertical bar as it is for two

horizontal bars (52 Hz). (b) LOSN type A and type B response curve values for 0˚ and 90˚ (see Fig 5). (c) LOSN scale factors for 800 and

1600 pixel edges (See Fig 5).

doi:10.1371/journal.pcbi.1005333.g006
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C: response of LOSN type x to a 280 pixel edge at orientation; S: scale factor for given total edge

length (Fig 5).

Calculating mushroom body Kenyon cell responses

Our first model, “DISTINCT”, uses excitatory and inhibitory connections from the lobula ori-

entation-sensitive type A and type B neurons originating from each quadrant of the pattern,

representing the equivalent dorsal and ventral visual fields of the bees left and right eyes,

respectively (see Fig 1). This allowed us to evaluate discrimination and generalisation perfor-

mance of visual patterns based on these lobula neurons alone. We used 86 different types of

simple excitatory and inhibitory synaptic configurations of the lobula orientation-sensitive

neurons to Kenyon cells to achieve the 25˚–30˚ orientation acuity reported for honeybees dur-

ing dual trial discrimination tasks [43] (see Table 1 for Kenyon cell synapse configurations).

The lobula neuron to Kenyon cell synaptic weights were fixed at +1 for the excitatory synapses,

and at -1 for the EAI inhibitory synapses, such that the ± synaptic value of each Kenyon cell’s

synapse would be the same as the single lobula orientation-sensitive neuron’s firing rate to

which it connects (with a small amount of noise applied, see below). This model could have

just as easily been configured to receive, for example, just one type B input with a synaptic

weight of +3, which would have produced the exact same effect as three excitatory lobula ori-

entation-sensitive neuron type B inputs (Fig 1). However, to reinforce the importance that

there is no learning in our models, and to focus the investigation into the lobula neuronal

responses, here we restrict the models to the most basic synaptic configuration, with all synap-

tic weights equal to ±1. The model had 30 copies of each of these Kenyon cell configuration

Table 1. Lobula orientation-sensitive neuron to Kenyon cell configuration types.

001: 1A+, 1B-

002: 1A+, 2B-

003: 1A+, 3B-

004: 1A+, 5B-

005: 1A+, 7B-

006: 1A+, 11B-

007: 1A+, 13B-

008: 2A+, 1B-

009: 2A+, 3B-

010: 2A+, 5B-

011: 2A+, 7B-

012: 2A+, 11B-

013: 2A+, 13B-

014: 3A+, 1B-

015: 3A+, 2B-

016: 3A+, 5B-

017: 3A+, 7B-

018: 3A+, 11B-

019: 3A+, 13B-

020: 5A+, 1B-

021: 5A+, 2B-

022: 5A+, 3B-

023: 5A+, 7B-

024: 5A+, 11B-

025: 5A+, 13B-

026: 7A+, 1B-

027: 7A+, 2B-

028: 7A+, 3B-

029: 7A+, 5B-

030: 7A+, 11B-

031: 7A+, 13B-

032: 11A+, 1B-

033: 11A+, 2B-

034: 11A+, 3B-

035: 11A+, 5B-

036: 11A+, 7B-

037: 11A+, 13B-

038: 13A+, 1B-

039: 13A+, 2B-

040: 13A+, 3B-

041: 13A+, 5B-

042: 13A+, 7B-

043: 13A+, 11B-

044: 1A-, 1B+

045: 1A-, 2B+

046: 1A-, 3B+

047: 1A-, 5B+

048: 1A-, 7B+

049: 1A-, 11B+

050: 1A-, 13B+

051: 2A-, 1B+

052: 2A-, 3B+

053: 2A-, 5B+

054: 2A-, 7B+

055: 2A-, 11B+

056: 2A-, 13B+

057: 3A-, 1B+

058: 3A-, 2B+

059: 3A-, 5B+

060: 3A-, 7B+

061: 3A-, 11B+

062: 3A-, 13B+

063: 5A-, 1B+

064: 5A-, 2B+

065: 5A-, 3B+

066: 5A-, 7B+

067: 5A-, 11B+

068: 5A-, 13B+

069: 7A-, 1B+

070: 7A-, 2B+

071: 7A-, 3B+

072: 7A-, 5B+

073: 7A-, 11B+

074: 7A-, 13B+

075: 11A-, 1B+

076: 11A-, 2B+

077: 11A-, 3B+

078: 11A-, 5B+

079: 11A-, 7B+

080: 11A-, 13B+

081: 13A-, 1B+

082: 13A-, 2B+

083: 13A-, 3B+

083: 13A-, 5B+

085: 13A-, 7B+

086: 13A-, 11B+

List of all 86 lobula large-field orientation-sensitive neurons (LOSNs) to mushroom body Kenyon cell

configurations. Format [configuration ID]: [number of LOSN type A synapses]A[+/- = excitatory/inhibitory

synapses], [number of LOSN type B synapses]B[+/- = excitatory/inhibitory synapses]. The first 43

configurations each had one or more LOSN type A excitatory connection and one or more LOSN type B

inhibitory connection. The second 43 configurations were the reciprocal of these with type A inputs being

inhibitory and type B excitatory. The use of prime numbers provided a simple way to exclude duplicate

responses i.e. 2A+, 5B- would generate the same Kenyon cell response as 4A, 10B-. All synaptic weights

were set to 1 or -1 for the individual excitatory and inhibitory connections respectively.

doi:10.1371/journal.pcbi.1005333.t001
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types per quadrant, resulting in a total of 10,320 Kenyon cells, which is still a small proportion

of the 340,000 Kenyon cells in the honeybee mushroom bodies [44].

The theoretical Kenyon cell connections defined above (Table 1) will each fire for a large

number of perceived edge orientations and edge lengths. However, the combinatorial firing

code of these 86 types allows small ranges of orientations to be uniquely identified by our mod-

els, and furthermore these edge orientations can be recognised invariant of the presented edge

lengths since an almost identical combinatorial code of the fired Kenyon cells is produced if

the same edge orientations are presented (see below). Adding additional lobula orientation-

sensitive neuron combinations would not increase the models ability to discriminate more

specific angles, as the acuity is fundamentally constrained by the particular lobula neuron

response curves, which often have the same firing rate for several adjacent orientations (Fig 5).

It is most likely that within the honeybee mushroom bodies a large variety of random lobula

neuron to Kenyon cell synaptic connections are initially established. Equally these synapses

are almost certainly plastic, adapting the synaptic strengths, and even adding and removing

lobula neuron synapses, during a bee’s foraging life [45]. In this way these Kenyon cells could

become highly selective and fire only for particular rewarding visual inputs. In addition, the

honeybee brain may be capable of adjusting the Kenyon cell synapse strengths to better

account for noise in the lobula orientation-sensitive neuron responses and produce more

effective combinatorial codes for identifying particular orientations than our models (see Dis-

cussion). However, since this study is primarily concerned with the lobula orientation-sensi-

tive neurons effectiveness as feature detectors and their affect on the honeybees’ ability to

discriminate and generalize achromatic patterns, and not on learning or other ‘fine-tuning’

neuronal mechanisms, this additional model complexity of random connectivity and weight

adaption was omitted.

Each models’ Kenyon cell response, to a given pattern, was calculated by first summating

the value of all its synapses (number and type of synapses dependent on that Kenyon cells

particular configuration type (Table 1)). If this total summated synaptic input was greater

than zero the output of the Kenyon cell was set to 1 (fired). Otherwise the response was set to

0 (completely inhibited). The individual Kenyon cell synaptic values were calculated by tak-

ing the firing rate of the connected lobula orientation-sensitive neuron, plus a small synaptic

signal to noise distortion, and multiplying this by +1 for excitatory synapses and -1 for inhib-

itory ones. The noise was added to account for natural variation in both the lobula orienta-

tion-sensitive neurons’ responses when presented with the same pattern, and in pre- and

post- synaptic neurotransmitter signals. Matlab’s (Matworks) AWGN (add white Gaussian

noise to signal) function was used with a signal to noise ratio value of 30. This setting pro-

duced approximately 2–5Hz variations on the 36Hz response of the type A lobula orienta-

tion-sensitive neuron at its maximal sensitivity and an edge length of 280 pixels. This would

be similar to the response variation reported in the honeybee lobula neurons after the deduc-

tion of the neuronal background firing rates [13]. In this way the binary values of all 10,320

Kenyon cell responses were calculated; these values were stored in an array and saved cross-

referenced to the pattern’s UID.

Given the apparent non-retinotopic distribution of visual inputs from the corresponding

left and right eye regions in the bee mushroom bodies [16] the second model “MERGED” was

created to explore the effect of merging lobula orientation-sensitive neuron synaptic connec-

tions from both eyes onto the Kenyon cells. To keep our theoretical model simple and compa-

rable to the DISTINCT model, we again relied on the 86 lobula neuron to Kenyon cell

configuration types (Table 1). However, in this model, rather than the previous model’s segre-

gation of Kenyon cells into different groups per quadrant, here just two distinct groups of Ken-

yon cells were formed; one group of Kenyon cells all received lobula orientation-sensitive
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neuron type A and type B inputs from the dorsal regions of both left and right eyes, and a simi-

lar group of Kenyon cells receiving the four lobula inputs from the ventral regions of the eyes

(see Fig 1). This MERGED model again had 30 copies of each configuration type, which cre-

ated in total 5,160 Kenyon cells.

Pre-processing of patterns

Each achromatic pattern used in this study was taken from the pdf document of the published

behavioural papers. These images were scaled and centred to fit within a 150 x 150 pixel PNG

image. Where pattern image resolution was insufficient, we recreated the patterns in Microsoft

PowerPoint using the stimuli instructions provided in the papers’ method sections. For the off-

set discrimination experiments, the 150 x 150 pixel patterns were placed centrally within a

larger white 300 x 150 pixel image and horizontally offset left and right between 0 and 200 pix-

els in 25 pixel increments to create a set of 17 test images per original pattern. For offsets

greater than 75 pixels the original images were cropped accordingly (see Fig 2).

All images were processed in Matlab (Mathworks) in the following way:

• Removal of excess pixel noise in the image

• Conversion to a binary black and white image using only the green channel

• Calculation of the orientation and gradient magnitude of each edge in the image using

Canny edge detection and Sobel gradient analysis

• Removal of short edges with a gradient magnitude� 1.7. Equivalent to those edges subtend-

ing less than 3˚ on a honeybee eye, which have been shown to be undistinguishable by bees

[46, 47]

• Division of the image into four equal quadrants; for each quadrant we generated a histogram

analysis of all oriented edge lengths in 1˚ increments (0˚-180˚)

• Saving the histogram dataset for each quadrant into a unique file per image

Calculating Kenyon cell similarity ratios and experimental performances

Each experiment simulated in this study was composed of three patterns, the rewarding pat-

tern (CS+) used during the honeybee training and two novel test patterns used in the experi-

mental evaluation trial. The test stimuli patterns that honeybees preferred during their trials

were designated as correct test stimuli (TSCOR) and the incorrect test stimuli (TSINC) were

accordingly the patterns the bees least preferred. To simulate the experiments from published

behavioural work, we first pre-processed the lobula orientation-sensitive neuron responses for

all the used patterns and compiled them in an experiment-specific unique Matlab (Math-

works) file (hereafter referred to as “study file”). For each individual experiment within a study

file, we defined the CS+, TSCOR and TSINC pattern unique identifiers (UIDs) as well as recod-

ing the behavioural results of the honeybees. For each model we loaded the study file, extracted

the unique pattern image IDs for each experiment and the corresponding eight lobula neuron

firing rate values and from these calculated the model’s Kenyon cell responses to all three pat-

terns. This provided separate arrays of binary Kenyon cell responses for the three patterns

(rewarding stimulus, correct test stimulus and incorrect test stimulus), which we used to calcu-

late the Euclidian distance from the rewarding stimulus array to the correct stimulus array,

and rewarding stimulus array to the incorrect stimulus array (see Fig 7). The ratio of these two

Euclidian distances produced a Kenyon cell similarity ratio for that experiment for a single
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simulation trial (Eq 2). Each experimental simulation was repeated one thousand times and

the average, standard deviation, minimum and maximum Kenyon cell similarity ratio results

of each experiment were recorded.

KCSR ¼ 1 �
EðCSþ;TSCORÞ

EðCSþ;TSCORÞ þ EðCSþ;TSINCÞ
ð2Þ

Where KCSR: Kenyon cell similarity ratio; E(x, y): Euclidian distance between x and y; CS+,

TSCOR, TSINC: array of Kenyon cell response values for the respective patterns.

For the generalisation experiments, honeybees had been trained on multiple rewarding and

unrewarding pattern pairs selected from relevant pools (Fig 3) [19, 20]. We followed the same

procedure as above but created individual simulations for each possible pattern triplet combi-

nation. As the behavioural results also included the choice selections of different groups of

bees trained on the reciprocal of the learned association (i.e. rewarding patterns became unre-

warding patterns, and vice versa), we used the published unrewarding training patterns as a

new set of rewarding (CS+) simulation patterns and paired them with the according correct

Fig 7. Worked example of LOSN firing rate response calculations. Simplified example of the lobula orientation-sensitive neuron

(LOSN) type A and type B firing rate response calculations. (a, b) Left: rewarding pattern (CS+) (single horizontal bar). Here we used

the DISTINCT model to calculate the Kenyon cell activations to this pattern. Right: graphical representation of all Kenyon cell activations

(red: fired, black: inhibited). In these example we again only processed the top-left quadrant of the visual field (see Fig 6). (c) The correct test

stimulus (TSCOR) and the resultant Kenyon cell activations. (d) Incorrect test stimulus (TSINC) and its Kenyon cell activation pattern. (e)

Black dots show if differences occur between the activation of respective Kenyon cells when presented with rewarding pattern and correct

test patterns. (f) Differences between the rewarding and incorrect stimuli Kenyon cell activations. The rewarding (CS+) and correct test

stimuli (TSCOR) both present mostly horizontal edges; however due to the difference in edge lengths, the lobula orientation-sensitive neuron

firing rates are markedly different. Nonetheless, the combination of excitatory and inhibitory synaptic connections from these lobula neurons

to the Kenyon cells (see Table 1) produces very similar Kenyon cell activations. Using the Euclidian distances between the Kenyon cell

activations of the CS+ and TSCOR, and CS+ and TSINC responses this simulation produced a Kenyon cell similarity ratio of (1 − (7.6158 /

(7.6158 + 13.6382))) = 0.64 (see Eq 2); indicating that for this simulation our DISTINCT model would generalize from the single horizontal

bar pattern (CS+) to the two horizontal bars pattern (TSCOR), in preference to the single vertical bar stimulus (TSINC).

doi:10.1371/journal.pcbi.1005333.g007

Bio-inspired Neural Network Helps Explain Honeybee Visual Generalization

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005333 February 3, 2017 19 / 23



and incorrect test patterns. Simulations were again performed one thousand times for all pat-

tern triplet combinations. The Kenyon cell similarity ratio results for all combinations were

then averaged to create an overall Kenyon cell similarity ratio value for that particular pattern

test.

Due to the difficulties attaining electrophysiological recordings from honeybees during

visual learning tasks [41, 48–50] we know almost nothing about how a bee’s final behavioural

decision is underpinned by neuronal firing patterns in the visual system or mushroom bodies.

However, we can assume that if the Kenyon cell responses to a presented test stimulus are very

similar to those generated by a previously learnt rewarding training stimulus (i.e. the same pat-

tern is presented) and the distractor pattern is very different to the learnt rewarding pattern,

then the honeybee Kenyon cell similarity ratio would be almost 1.0, and we would expect the

bee to almost always visit the correct test pattern, with an experimental correct choice perfor-

mance close to 100%. Similarly, if the correct and incorrect test patterns are different from

each other and also different to the learnt rewarding pattern, but both produced Kenyon cell

responses equally similar/dissimilar to that of the rewarding pattern (i.e. Kenyon cell similarity

ratio = 0.5) then we would expect the honeybee to visit each pattern equally likely, and there-

fore over multiple trials (and multiple bees) have an experimental ‘correct’ choice performance

of approximately 50%. Furthermore, if the honeybees were trained on a particular rewarding

pattern and then tested with a correct test pattern similar to this learnt stimulus and a very dif-

ferent incorrect test pattern, and then a second test conducted with the same correct pattern

and a very similar incorrect pattern, we would again assume the honeybees correct choice

accuracy for the first test would be far higher than the second test. Similarly, the Kenyon cell

similarity ratio of the first experiment would undoubtedly be much higher than that of the

Kenyon cell similarity ratio of the second experiment.

Consequently, to allow us to compare our model simulation results directly against the

empirical honeybee experimental results we make the following assertion: our models’ simu-

lated bee performances for any given experiment are directly correlated to the average Kenyon

cell similarity ratio of all simulation trials for that experiment. In this way if a model’s average

Kenyon cell similarity ratio for a given experiment were 0.64 then its simulated bee’s overall

experimental performance for selecting the correct test pattern would be 64%. It would have

been possible to implement a probabilistic ‘Monte Carlo’ style binary response for the simu-

lated bees to choose either the corrector incorrect test pattern per trial (based on that simula-

tion trial’s Kenyon cell similarity ratio result) and subsequently calculate the proportion of

correct choices (as with honeybees). However, this would have added probabilistic variability,

whereas the Kenyon cell similarity ratio values are variant on just the small amount of synaptic

noise applied to the lobula orientation-sensitive neuron to Kenyon cell connections (which is

biologically relevant), therefore this additional probabilistic step was judged an unnecessary

and potentially detrimental complication. The above assertion does have some limitations

when assuming a direct comparable mechanism within the honeybee brain (see Discussion),

but nonetheless this provides an effective method for assessing how the lobula orientation-sen-

sitive neuron responses, as well as their Kenyon cell connection configurations, affect the mod-

els’ performances over a wide range of pattern experiments. This mechanism also benefits

from not needing to train and test an artificial neural network on each pattern experiment,

and the inherent parameter tuning and subsequent performance evaluations that this approach

would require.

It would have been desirable to assess how our models correlated with the honeybees’ rela-

tive performances over all of the tested experiments. Each set of the original honeybee general-

isation experiments [19, 20] only provided a number of mean data points for comparison. In

each study, the bees were tested on patterns that typically varied in one particular aspect (e.g.
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number and orientation of bars in each pattern quadrant), but were similar otherwise. More-

over, the used publications addressed similar issues and used similar patterns. While this is a

good approach when probing the limits of the learning abilities of bees, it also means that the

data points are not independent due to pseudo-replication. A correlation coefficient involving

data from multiple different experiments would, therefore, be misleading. Instead, we dis-

played our simulated bee experimental performance results (equivalent to the Kenyon cell sim-

ilarity ratio averages over all of that experiment’s simulations) side-by-side with the empirical

data. These were grouped into five batches of related generalization tasks, similar to that done

in the original studies, so that the relative performance of the different simulated experiments

could be assessed, and compared to that of the real honeybees’ relative performances on the

same sets of pattern pairs.
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