192 research outputs found

    Super Heavy Dark Matter Anisotropies from D-particles in the Early Universe

    Get PDF
    We discuss a way of producing anisotropies in the spectrum of superheavy Dark matter, which are due to the distortion of the inflationary space time induced by the recoil of D-particles upon their scattering with ordinary string matter in the Early Universe. We calculate such distortions by world-sheet Liouville string theory (perturbative) methods. The resulting anisotropies are found to be proportional to the average recoil velocity and density of the D-particles. In our analysis we employ a regulated version of de Sitter space, allowing for graceful exit from inflation. This guarantees the asymptotic flatness of the space time, as required for a consistent interpretation, within an effective field theory context, of the associated Bogolubov coefficients as particle number densities. The latter are computed by standard WKB methods.Comment: 30 pages Latex, two eps figures incorporate

    Shock waves and Birkhoff's theorem in Lovelock gravity

    Full text link
    Spherically symmetric shock waves are shown to exist in Lovelock gravity. They amount to a change of branch of the spherically symmetric solutions across a null hypersurface. The implications of their existence for the status of Birkhoff's theorem in the theory is discussed.Comment: 9 pages, no figures, clarifying changes made in the text of section III and references adde

    Generalized Batchelor functions of isotropic turbulence

    Full text link
    We generalize Batchelor's parameterization of the autocorrelation functions of isotropic turbulence in a form involving a product expansion with multiple small scales. The richer small scale structure acquired this way, compared to the usual Batchelor function, is necessary so that the associated energy spectrum approximate well actual spectra in the universal equilibrium range. We propose that the generalized function provides an approximation of arbitrary accuracy for actual spectra of isotropic turbulence over the universal equilibrium range. The degree of accuracy depends on the number of higher moments which are determinable and it is reflected in the number of small scales involved. The energy spectrum of the generalized function is derived, and for the case of two small scales is compared with data from high-resolution direct numerical simulations. We show that the compensated spectra (which illustrate the bottleneck effect) and dissipation spectra are encapsulated excellently, in accordance with our proposal

    On the stationarity of linearly forced turbulence in finite domains

    Full text link
    A simple scheme of forcing turbulence away from decay was introduced by Lundgren some time ago, the `linear forcing', which amounts to a force term linear in the velocity field with a constant coefficient. The evolution of linearly forced turbulence towards a stationary final state, as indicated by direct numerical simulations (DNS), is examined from a theoretical point of view based on symmetry arguments. In order to follow closely the DNS the flow is assumed to live in a cubic domain with periodic boundary conditions. The simplicity of the linear forcing scheme allows one to re-write the problem as one of decaying turbulence with a decreasing viscosity. Scaling symmetry considerations suggest that the system evolves to a stationary state, evolution that may be understood as the gradual breaking of a larger approximate symmetry to a smaller exact symmetry. The same arguments show that the finiteness of the domain is intimately related to the evolution of the system to a stationary state at late times, as well as the consistency of this state with a high degree of isotropy imposed by the symmetries of the domain itself. The fluctuations observed in the DNS for all quantities in the stationary state can be associated with deviations from isotropy. Indeed, self-preserving isotropic turbulence models are used to study evolution from a direct dynamical point of view, emphasizing the naturalness of the Taylor microscale as a self-similarity scale in this system. In this context the stationary state emerges as a stable fixed point. Self-preservation seems to be the reason behind a noted similarity of the third order structure function between the linearly forced and freely decaying turbulence, where again the finiteness of the domain plays an significant role.Comment: 15 pages, 7 figures, changes in the discussion at the end of section VI, formula (60) correcte

    773-4 Long Term Efficacy and Safety of Endovascular Low Dose Irradiation In a Swine Model of Restenosis After Angloplasty

    Get PDF
    Restenosis after balloon angioplasty is characterized by neointima formation. We have previously shown that ionizing radiation reduce neointima formation two weeks after angioplasty in a swine model of restenosis. To determine the durability of this effect and the long term safety after endovascular irradiation twenty one miniswine coronary arteries underwent overstretch balloon injury with a 3.5mm angioplasty balloon in the LAD, LCX and RCA. High energy 1921ridium source was introduced immediately by random assignment to deliver 700 or 1400 cGy in 14 injured coronary arteries (LAD and CX). Six months later an angiogram was performed, the animals were killed and the coronary arteries were perfusion fixed. Serial sections were stained with H&E, WG, MT then evaluated by histopathologic and morphometric techniques. Intimal area (IA) and area of intimal thickness corrected for the extent of injury (INFL) was measured in the irradiated and control arteries and compared with pigs that underwent the same treatment but were followed for 2 weeks only.ResultsAll treated arteries were patent with normal angiographic appearance. Lumen diameters at baseline and follow-up were similar. There was no difference in fibrosis at the adventitia, media, perivascular space or adjacent segments of myocardium of the irradiated arteries compared with control.Control700 cGy1400 cGyIN/FL 2Weeks0.59±0.230.42±0.15**0.17±0.16****IN/FL 6 Months0.50±0.20.35±0.18*0.31±0.16**IA 6 Months (mm)1.25±0.250.85±0.47***0.62±0.45**P values: control versus treatment group:*P=0.009**P<0.001***P=0.05.****P<0.0001ConclusionsEndovascular low dose irradiation in this model is safe andthe inhibitory effect of localized radiation on neointimal thickening (restenos is like) response to angioplasty is maintained at six months

    Singular sources in gravity and homotopy in the space of connections

    Full text link
    Suppose a Lagrangian is constructed from its fields and their derivatives. When the field configuration is a distribution, it is unambiguously defined as the limit of a sequence of smooth fields. The Lagrangian may or may not be a distribution, depending on whether there is some undefined product of distributions. Supposing that the Lagrangian is a distribution, it is unambiguously defined as the limit of a sequence of Lagrangians. But there still remains the question: Is the distributional Lagrangian uniquely defined by the limiting process for the fields themselves? In this paper a general geometrical construction is advanced to address this question. We describe certain types of singularities, not by distribution valued tensors, but by showing that the action functional for the singular fields is (formally) equivalent to another action built out of \emph{smooth} fields. Thus we manage to make the problem of the lack of a derivative disappear from a system which gives differential equations. Certain ideas from homotopy and homology theory turn out to be of central importance in analyzing the problem and clarifying finer aspects of it. The method is applied to general relativity in first order formalism, which gives some interesting insights into distributional geometries in that theory. Then more general gravitational Lagrangians in first order formalism are considered such as Lovelock terms (for which the action principle admits space-times more singular than other higher curvature theories).Comment: 21 pages, 9 figures, RevTe

    Brane Universes with Gauss-Bonnet-Induced-Gravity

    Full text link
    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a ``dark energy'' field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density ``Big-Bang'' and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.Comment: 12 pages, 19 figures. Minor modifications to text, comments on phantom behaviour added. References added. As submitted to JCA

    A supersymmetric D-brane Model of Space-Time Foam

    Full text link
    We present a supersymmetric model of space-time foam with two stacks of eight D8-branes with equal string tensions, separated by a single bulk dimension containing D0-brane particles that represent quantum fluctuations in the space-time foam. The ground state configuration with static D-branes has zero vacuum energy. However, gravitons and other closed-string states propagating through the bulk may interact with the D0-particles, causing them to recoil and the vacuum energy to become non zero. This provides a possible origin of dark energy. Recoil also distorts the background metric felt by energetic massless string states, which travel at less than the usual (low-energy) velocity of light. On the other hand, the propagation of chiral matter anchored on the D8 branes is not affected by such space-time foam effects.Comment: 33 pages, latex, five figure

    BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis

    Get PDF
    Neurotrophin receptors mediate a plethora of signals affecting neuronal survival. The p75 pan-neurotrophin receptor controls neuronal cell fate after its selective activation by immature and mature isoforms of all neurotrophins. It also exerts pleiotropic effects interacting with a variety of ligands in different neuronal or non-neuronal cells. In the present study, we explored the biophysical and functional interactions of a bloodbrain-barrier (BBB) permeable, C17-spiroepoxy steroid derivative, BNN27, with p75NTR receptor. BNN27 was recently shown to bind to NGF high-affinity receptor, TrkA. We now tested the p75NTR-mediated effects of BNN27 in mouse Cerebellar Granule Neurons (CGNs), expressing p75NTR, but not TrkA receptors. Our findings show that BNN27 physically interacts with p75NTR receptors in specific amino-residues of its extracellular domain, inducing the recruitment of p75NTR receptor to its effector protein RIP2 and the simultaneous release of RhoGDI in primary neuronal cells. Activation of the p75NTR receptor by BNN27 reverses serum deprivation-induced apoptosis of CGNs resulting in the decrease of the phosphorylation of pro-apoptotic JNK kinase and of the cleavage of Caspase-3, effects completely abolished in CGNs, isolated from p75NTR null mice. In conclusion, BNN27 represents a lead molecule for the development of novel p75NTR ligands, controlling specific p75NTR-mediated signaling of neuronal cell fate, with potential applications in therapeutics of neurodegenerative diseases and brain traum
    corecore