125 research outputs found
Loss of AND-34/BCAR3 Expression in Mice Results in Rupture of the Adult Lens
PURPOSE. AND-34/BCAR3 (Breast Cancer Anti-Estrogen Resistance 3) associates with the focal adhesion adaptor protein, p130CAS/BCAR1. Expression of AND-34 regulates epithelial cell growth pattern, motility, and growth factor dependence. We sought to establish the effects of the loss of AND-34 expression in a mammalian organism. METHODS. AND-34−/− mice were generated by homologous recombination. Histopathology, in situ hybridization, and western blotting were performed on murine tissues. RESULTS. Western analyses confirmed total loss of expression in AND-34−/− splenic lymphocytes. Mice lacking AND-34 are fertile and have normal longevity. While AND-34 is widely expressed in wild type mice, histologic analysis of multiple organs in AND-34−/− mice is unremarkable and analyses of lymphocyte development show no overt changes. A small percentage of AND-34−/− mice show distinctive small white eye lesions resulting from the migration of ruptured cortical lens tissue into the anterior chamber. Following initial vacuolization and liquefaction of the lens cortex first observed at postnatal day three, posterior lens rupture occurs in all AND-34−/− mice, beginning as early as three weeks and seen in all mice at three months. Western blot analysis and in situ hybridization confirmed the presence of AND-34 RNA and protein in lens epithelial cells, particularly at the lens equator. Prior data link AND-34 expression to the activation of Akt signaling. While Akt Ser 473 phosphorylation was readily detectable in AND-34+/+ lens epithelial cells, it was markedly reduced in the AND-34−/− lens epithelium. Basal levels of p130Cas phosphorylation were higher in AND-34+/+ than in AND-34−/− lens epithelium. CONCLUSIONS. These results demonstrate the loss of AND-34 dysregulates focal adhesion complex signaling in lens epithelial cells and suggest that AND-34-mediated signaling is required for maintenance of the structural integrity of the adult ocular lens.National Institutes of Health (RO1 CA114094); Logica Foundatio
Contrast-Enhanced Magnetic Resonance Imaging Confirmation of an Anterior Protein Pathway in Normal Rabbit Eyes
Purpose: Contrast-enhanced proton magnetic resonance imaging ( 1H MRI) has been used as a quantitative, noninvasive method to corroborate a pathway for the diffusion of plasma-derived protein into the aqueous humor in the normal rabbit eye. Methods. T1-weighted magnetic resonance images were produced over 1- to 3-hour periods after the intravenous injection of gadolinium diethylenetriamine-pentaacetic acid. Results. Analysis of the images yielded the time dependence of signal enhancements within the areas of interest. The ciliary body showed an immediate sharp increase, followed by a gradual decrease in signal enhancement with time. Although a gradual increase in signal enhancement was found in the anterior chamber, no significant change occurred in the posterior chamber. A similar MRI experiment with an owl monkey produced parallel, though smaller, signal enhancements in the ciliary body and anterior chamber. Again, however, no significant change was found in the posterior chamber. Conclusions. These results support and extend those of recent fluorophotometric, tracer-localization, and modeling studies demonstrating that in the normal rabbit and monkey eye, plasma-derived proteins bypass the posterior chamber, entering the anterior chamber directly via the iris root
The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy
In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease
Advances in research on the use of biochar in soil for remediation: a review
Purpose: Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants. Materials and methods: Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively. Results and discussion: The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar’s suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4–5.5) and contaminant concentrations ( 50 mg kg−1). Conclusions: Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar’s ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist
Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar - A screening study
The influence of reactor type and operating conditions of the pyrolysis unit on the final concentration of toxic contaminants in biochar remains unclear. Therefore, we determined the concentrations of polycyclic aromatic hydrocarbons (PAHs), oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs), nitrogen-containing polycyclic aromatic compounds (N-PACs), polychlorinated dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs) in biochars produced from three different feedstocks (softwood, wheat straw, and anaerobic digestate). Different scaled pyrolysis units (one batch and two continuous units) at two different temperatures (550 and 700 degrees C) were considered. The results revealed that the type of biomass had a significant influence on the PAH, oxy-PAH, and N-PAC content of the biochars. The configuration and type of the pyrolysis unit influenced only the wheat straw pyrolyzed at 550 degrees C. PCDDs and PCDFs occurred at very low levels in the biochars. In terms of PAH, PCDD, and PCDF content, the biochars assessed in this study represent a low risk to the environment, regardless of the temperature and type and size of the pyrolysis unit.Correction: Weidemann, E., Buss, W., Edo, M. et al. Environ Sci Pollut Res (2018) 25: 3941. https://doi.org/10.1007/s11356-017-0804-6Bio4Energ
The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications
ABSTRACT Vegetable oils present important pharmacological properties, which gained ground in the pharmaceutical field. Its encapsulation in nanoemulsions is considered a promising strategy to facilitate the applicability of these natural compounds and to potentiate the actions. These formulations offer several advantages for topical and systemic delivery of cosmetic and pharmaceutical agents including controlled droplet size, protection of the vegetable oil to photo, thermal and volatilization instability and ability to dissolve and stabilize lipophilic drugs. For these reasons, the aim of this review is to report on some characteristics, preparation methods, applications and especially analyze recent research available in the literature concerning the use of vegetable oils with therapeutic characteristics as lipid core in nanoemulsions, specially from Brazilian flora, such as babassu (Orbignya oleifera), aroeira (Schinus molle L.), andiroba (Carapa guaianiensis), casca-de-anta (Drimys brasiliensis Miers), sucupira (Pterodon emarginatus Vogel) and carqueja doce (Stenachaenium megapotamicum) oils
- …