47 research outputs found

    Verification of the code DYN3D for calculations of neutron flux fluctuations

    Get PDF
    Insufficiently explained magnitudes and patterns of flux fluctuation observed mainly in KWU PWRs are recently investigated by various European institutions. Among the numerical tools used to investigate the\ua0neutron flux\ua0fluctuations is the time-domain reactor dynamics code\ua0DYN3D. As\ua0DYN3D\ua0and comparable codes have not been developed with the primary intention to simulate low-amplitude neutron flux fluctuations, their applicability in this field has to be verified.In order to contribute to the verification of\ua0DYN3D\ua0for the simulation of neutron flux fluctuations, two special cases of perturbations of the neutron flux (a localized absorber of variable/oscillatory strength and a travelling oscillatory perturbation) are considered with\ua0DYN3D\ua0on the one hand and with the frequency-domain neutron noise tool\ua0CORE SIM\ua0as well as analytical frequency-domain approaches, respectively, on the other hand. The obtained results are compared with respect to the distributions of the amplitude and the phase of the induced neutron flux fluctuations. The comparisons are repeated with varied amplitudes and frequencies of the perturbation.The results agree well both qualitatively and quantitatively for each of the conducted calculations. The remaining deviations between the\ua0DYN3D\ua0results and the reference results exhibit a dependence on the perturbation magnitude, which is attributed to the neglect of higher-order terms (linear theory) of the perturbed quantities in the calculation of the reference solutions

    Feature extraction and identification techniques for the alignment of perturbation simulations with power plant measurements

    Get PDF
    In this work, a methodology is proposed for the comparison of the measured and simulated neutron noise signals in nuclear power plants, with the simulation sets having been generated by the CORE SIM+ diffusion-based reactor noise simulator. More specifically, the method relies on the computation of the Cross-Power Spectral Density of the detector signals and the subsequent comparison with their simulated counterparts, which involves specific frequency values corresponding to the signals’ high energy content. The different simulated perturbations considered are (i) axially traveling perturbations, (ii) fuel assembly vibrations, (iii) core barrel vibrations, and finally (iv) generic “absorber of variable strength” types. The reactor core used for the current study is a German 4-loop pre-Konvoi Pressurized Water Reactor

    Detection and localisation of multiple in-core perturbations with neutron noise-based self-supervised domain adaptation

    Get PDF
    The use of non-intrusive techniques for monitoring nuclear reactors is becoming more vital as western fleets age. As a consequence, the necessity to detect more frequently occurring operational anomalies is of upmost interest. Here, noise diagnostics — the analysis of small stationary deviations of local neutron flux around its time-averaged value — is employed aiming to unfold from detector readings the nature and location of driving perturbations. Given that in-core instrumentation of western-type light-water reactors are scarce in number of detectors, rendering formal inversion of the reactor transfer function impossible, we propose to utilise advancements in Machine Learning and Deep Learning for the task of unfolding. This work presents an approach to such a task doing so in the presence of multiple and simultaneously occurring perturbations or anomalies. A voxel-wise semantic segmentation network is proposed to determine the nature and sourcelocation of multiple and simultaneously occurring perturbations in the frequency domain. A diffusion-based core simulation tool has been employed to provide simulated training data for two reactors. Additionally, we work towards the application of the aforementioned approach to real measurements, introducing a self-supervised domain adaptation procedure to align the representation distributions of simulated and real plant measurements

    Modelling and simulations of reactor neutron noise induced by mechanical vibrations

    Get PDF
    Mechanical vibrations of core internals are among the main perturbations that induce oscillations in the neutron flux field, also known as neutron noise. In this work, different simulation models for the study of the influence of the mechanical vibrations of fuel assemblies on the neutron flux in the reactor core have been discussed. These methodologies employ the diffusion approximation, with or without a previous homogenization model, to simulate the neutron noise in the time or the frequency domain. The diffusion-based approach is expected to be less accurate in the vicinity of the vibrating fuel assemblies, but correct when considering distances larger than a few diffusion lengths away from the perturbation. All methodologies provide consistent results and can reproduce typical features of the neutron noise induced by mechanical vibrations of core components. First, FEMFFUSION can perform simulations in both the time and frequency domains. Second, CORE SIM + can be used to study various neutron noise scenarios in realistic three-dimensional reactor configurations. The third methodology is centred on using commercial codes as CASMO-5, SIMULATE-3 and SIMULATE-3K. This methodology allows time domain simulations of the neutron noise induced by different neutron noise sources in a nuclear reactor. Finally, a model for time-dependent geometry is implemented for the code system ATHLET/QUABOX-CUBBOX employing a cross-section-based approach for encoding water gap width variations at the reflector

    Modeling noise experiments performed at AKR-2 and CROCUS zero-power reactors

    Get PDF
    CORTEX is a EU H2020 project (2017-2021) devoted to the analysis of ’reactor neutron noise’ in nuclear reactors, i.e. the small fluctuations occurring around the stationary state due to external or internal disturbances in the core. One important aspect of CORTEX is the development of neutron noise simulation codes capable of modeling the spatial variations of the noise distribution in a reactor. In this paper we illustrate the validation activities concerning the comparison of the simulation results obtained by several noise simulation codes with respect to experimental data produced at the zero-power reactors AKR-2 (operated at TUD, Germany) and CROCUS (operated at EPFL, Switzerland). Both research reactors are modeled in the time and frequency domains, using transport or diffusion theory. Overall, the noise simulators managed to capture the main features of the neutron noise behavior observed in the experimental campaigns carried out in CROCUS and AKR-2, even though computational biases exist close to the region where the noise-inducing mechanical vibration was located (the so-called ”noise source”). In some of the experiments, it was possible to observe the spatial variation of the relative neutron noise, even relatively far from the noise source. This was achieved through reduced uncertainties using long measurements, the installation of numerous, robust and efficient detectors at a variety of positions in the near vicinity or inside the core, as well as new post-processing methods. For the numerical simulation tools, modeling the spatial variations of the neutron noise behavior in zero-power research reactors is an extremely challenging problem, because of the small magnitude of the noise field; and because deviations from a point-kinetics behavior are most visible in portions of the core that are especially difficult to be precisely represented by simulation codes, such as experimental channels. Nonetheless the limitations of the simulation tools reported in the paper were not an issue for the CORTEX project, as most of the computational biases are found close to the noise source

    Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    Get PDF
    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies

    Treatment of osteochondral lesions of the talus: a systematic review

    Get PDF
    The aim of this study was to summarize all eligible studies to compare the effectiveness of treatment strategies for osteochondral defects (OCD) of the talus. Electronic databases from January 1966 to December 2006 were systematically screened. The proportion of the patient population treated successfully was noted, and percentages were calculated. For each treatment strategy, study size weighted success rates were calculated. Fifty-two studies described the results of 65 treatment groups of treatment strategies for OCD of the talus. One randomized clinical trial was identified. Seven studies described the results of non-operative treatment, 4 of excision, 13 of excision and curettage, 18 of excision, curettage and bone marrow stimulation (BMS), 4 of an autogenous bone graft, 2 of transmalleolar drilling (TMD), 9 of osteochondral transplantation (OATS), 4 of autologous chondrocyte implantation (ACI), 3 of retrograde drilling and 1 of fixation. OATS, BMS and ACI scored success rates of 87, 85 and 76%, respectively. Retrograde drilling and fixation scored 88 and 89%, respectively. Together with the newer techniques OATS and ACI, BMS was identified as an effective treatment strategy for OCD of the talus. Because of the relatively high cost of ACI and the knee morbidity seen in OATS, we conclude that BMS is the treatment of choice for primary osteochondral talar lesions. However, due to great diversity in the articles and variability in treatment results, no definitive conclusions can be drawn. Further sufficiently powered, randomized clinical trials with uniform methodology and validated outcome measures should be initiated to compare the outcome of surgical strategies for OCD of the talus
    corecore