1,526 research outputs found

    Particle-in-Cell simulations of electron spin effects in plasmas

    Full text link
    We have here developed a particle-in-cell code accounting for the magnetic dipole force and for the magnetization currents associated with the electron spin. The electrons is divided into spin-up and spin-down populations relative to the magnetic field, where the magnetic dipole force acts in opposite directions for the two species. To validate the code, we have studied the wakefield generation by an electromagnetic pulse propagating parallel to an external magnetic field. The properties of the generated wakefield is shown to be in good quantitative agreement with previous theoretical results. Generalizations of the code to account for more quantum effects is discussedComment: 5 pages, 6 figure

    Spin induced nonlinearities in the electron MHD regime

    Full text link
    We consider the influence of the electron spin on the nonlinear propagation of whistler waves. For this purpose a recently developed electron two-fluid model, where the spin up- and down populations are treated as different fluids, is adapted to the electron MHD regime. We then derive a nonlinear Schrodinger equation for whistler waves, and compare the coefficients of nonlinearity with and without spin effects. The relative importance of spin effects depend on the plasma density and temperature as well as the external magnetic field strength and the wave frequency. The significance of our results to various plasmas are discussed.Comment: 5 page

    Generation of wakefields by whistlers in spin quantum magnetoplasmas

    Full text link
    The excitation of electrostatic wakefields in a magnetized spin quantum plasma by the classical as well as the spin-induced ponderomotive force (CPF and SPF, respectively) due to whistler waves is reported. The nonlinear dynamics of the whistlers and the wakefields is shown to be governed by a coupled set of nonlinear Schr\"{o}dinger (NLS) and driven Boussinesq-like equations. It is found that the quantum force associated with the Bohm potential introduces two characteristic length scales, which lead to the excitation of multiple wakefields in a strongly magnetized dense plasma (with a typical magnetic field strength B0≳109B_{0}\gtrsim10^{9} T and particle density n0≳1036n_{0}\gtrsim10^{36} m−3^{-3}), where the SPF strongly dominates over the CPF. In other regimes, namely B0≲108B_{0}\lesssim10^{8} T and  n0≲1035\ n_{0}\lesssim10^{35} m−3^{-3}, where the SPF is comparable to the CPF, a plasma wakefield can also be excited self-consistently with one characteristic length scale. Numerical results reveal that the wakefield amplitude is enhanced by the quantum tunneling effect, however it is lowered by the external magnetic field. Under appropriate conditions, the wakefields can maintain high coherence over multiple plasma wavelengths and thereby accelerate electrons to extremely high energies. The results could be useful for particle acceleration at short scales, i.e. at nano- and micrometer scales, in magnetized dense plasmas where the driver is the whistler wave instead of a laser or a particle beam.Comment: 8 pages, 2 figures; Revised version to appear in Physics of Plasmas (Dec. 2010 issue

    Nonlinear Interactions Between Gravitational Radiation and Modified Alfven Modes in Astrophysical Dusty Plasmas

    Get PDF
    We present an investigation of nonlinear interactions between Gravitational Radiation and modified Alfv\'{e}n modes in astrophysical dusty plasmas. Assuming that stationary charged dust grains form neutralizing background in an electron-ion-dust plasma, we obtain the three wave coupling coefficients, and calculate the growth rates for parametrically coupled gravitational radiation and modified Alfv\'{e}n-Rao modes. The threshold value of the gravitational wave amplitude associated with convective stabilization is particularly small if the gravitational frequency is close to twice the modified Alfv\'en wave-frequency. The implication of our results to astrophysical dusty plasmas is discussed.Comment: A few typos corrected. Published in Phys. Rev.

    Nonlinear wave interaction and spin models in the MHD regime

    Full text link
    Here we consider the influence on the electron spin in the MHD regime. Recently developed models which include spin-velocity correlations are taken as a starting point. A theoretical argument is presented, suggesting that in the MHD regime a single fluid electron model with spin correlations is equivalent to a model with spin-up and spin-down electrons constituting different fluids, but where the spin-velocity correlations are omitted. Three wave interaction of 2 shear Alfven waves and a compressional Alfven wave is then taken as a model problem to evaluate the asserted equivalence. The theoretical argument turns out to be supported, as the predictions of the two models agree completely. Furthermore, the three wave coupling coefficients obey the Manley-Rowe relations, which give further support to the soundness of the models and the validity of the assumptions made in the derivation. Finally we point out that the proposed two-fluid model can be incorporated in standard Particle-In-Cell schemes with only minor modifications.Comment: 8 page

    Resonant interaction between gravitational waves, electromagnetic waves and plasma flows

    Full text link
    In magnetized plasmas gravitational and electromagnetic waves may interact coherently and exchange energy between themselves and with plasma flows. We derive the wave interaction equations for these processes in the case of waves propagating perpendicular or parallel to the plasma background magnetic field. In the latter case, the electromagnetic waves are taken to be circularly polarized waves of arbitrary amplitude. We allow for a background drift flow of the plasma components which increases the number of possible evolution scenarios. The interaction equations are solved analytically and the characteristic time scales for conversion between gravitational and electromagnetic waves are found. In particular, it is shown that in the presence of a drift flow there are explosive instabilities resulting in the generation of gravitational and electromagnetic waves. Conversely, we show that energetic waves can interact to accelerate particles and thereby \emph{produce} a drift flow. The relevance of these results for astrophysical and cosmological plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde

    Circularly polarized modes in magnetized spin plasmas

    Full text link
    The influence of the intrinsic spin of electrons on the propagation of circularly polarized waves in a magnetized plasma is considered. New eigenmodes are identified, one of which propagates below the electron cyclotron frequency, one above the spin-precession frequency, and another close to the spin-precession frequency.\ The latter corresponds to the spin modes in ferromagnets under certain conditions. In the nonrelativistic motion of electrons, the spin effects become noticeable even when the external magnetic field B0B_{0} is below the quantum critical\ magnetic field strength, i.e., B0<B_{0}< BQ=4.4138×109 TB_{Q} =4.4138\times10^{9}\, \mathrm{T} and the electron density satisfies n0≫nc≃1032n_{0} \gg n_{c}\simeq10^{32}m−3^{-3}. The importance of electron spin (paramagnetic) resonance (ESR) for plasma diagnostics is discussed.Comment: 10 page

    New Quantum Limits in Plasmonic Devices

    Full text link
    Surface plasmon polaritons (SPPs) have recently been recognized as an important future technique for microelectronics. Such SPPs have been studied using classical theory. However, current state-of-the-art experiments are rapidly approaching nanoscales, and quantum effects can then become important. Here we study the properties of quantum SPPs at the interface between an electron quantum plasma and a dielectric material. It is shown that the effect of quantum broadening of the transition layer is most important. In particular, the damping of SPPs does not vanish even in the absence of collisional dissipation, thus posing a fundamental size limit for plasmonic devices. Consequences and applications of our results are pointed out.Comment: 5 pages, 2 figures, to appear in Europhysics Letter

    Graviton mediated photon-photon scattering in general relativity

    Get PDF
    In this paper we consider photon-photon scattering due to self-induced gravitational perturbations on a Minkowski background. We focus on four-wave interaction between plane waves with weakly space and time dependent amplitudes, since interaction involving a fewer number of waves is excluded by energy-momentum conservation. The Einstein-Maxwell system is solved perturbatively to third order in the field amplitudes and the coupling coefficients are found for arbitrary polarizations in the center of mass system. Comparisons with calculations based on quantum field theoretical methods are made, and the small discrepances are explained.Comment: 5 pages, 3 figure
    • …
    corecore