8 research outputs found

    A Study on the Integrated Control of Ship Motion Based on Joystick Control

    Get PDF
    ๋ณธ ๋…ผ๋ฌธ์€ ์—ฌ๋Ÿฌ๊ฐœ์˜ ์ถ”๋ ฅ์žฅ์น˜๋ฅผ ๊ฐ€์ง„ ์„ ๋ฐ•์„ ๋Œ€์ƒ์œผ๋กœ ์™ธ๋ถ€์—์„œ์กฐ์ด์Šคํ‹ฑ์œผ๋กœ ์„ ๋ฐ•์šด๋™์˜ ๋ช…๋ น์„ ๋‚ด๋ฆด ๋•Œ ๊ทธ ๋ช…๋ น์— ํ•ด๋‹นํ•˜๋Š” ์„ ๋ฐ•์šด๋™์„ ๊ฐ€์ง€๋„๋ก ํ†ตํ•ฉ์ œ์–ดํ•˜๋Š” ๊ฒƒ์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค. ์ฃผ์š” ๊ตฌ์„ฑ์š”์†Œ๋กœ๋Š” ์กฐ์ด์Šคํ‹ฑ ๋ช…๋ น์ž…๋ ฅ๋ชจ๋“ˆ, ๋ช…๋ น์ธ์‹๋ชจ๋“ˆ, ๊ธฐ์ค€์ž…๋ ฅ ์ƒ์„ฑ๋ชจ๋“ˆ, ์š”๊ตฌ์ถ”๋ ฅ ์ƒ์„ฑ๋ชจ๋“ˆ, ์ œ์–ด์ถ”๋ ฅ ์ƒ์„ฑ๋ชจ๋“ˆ, ์ถ”๋ ฅํ• ๋‹น ๋ชจ๋“ˆ ๋“ฑ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ฃผ์š”๊ตฌ์„ฑ ๋ชจ๋“ˆ๋“ค์„ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์œผ๋กœ ์—ฐ๊ตฌํ•˜์˜€์œผ๋ฉฐ ํŠน์ •ํ•œ ์„ ๋ฐ•์„ ๋ชจ๋ธ๋กœ ํ•˜์—ฌ ๊ฐ ๋ชจ๋“ˆ์˜ ํƒ€๋‹น์„ฑ๊ณผ ์„ ๋ฐ• ์ „์ฒด์˜ ํ†ตํ•ฉ์ œ์–ด ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์กฐ์ด์Šคํ‹ฑ ๋ช…๋ น์— ๋Œ€์‘ํ•˜๋Š” ๋‹ค์–‘ํ•œ ์„ ๋ฐ•์šด๋™์„ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ํ†ตํ•ฉ์ œ์–ด์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.์ œ1์žฅ ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ๋‚ด์šฉ 2 ์ œ2์žฅ ์„ ๋ฐ•์˜ ์กฐ์ข…์šด๋™ ๋ฐฉ์ •์‹ 6 2.1 ์„ ๋ฐ•์šด๋™ ์ขŒํ‘œ๊ณ„์™€ ์šด๋™๋ณ€์ˆ˜์˜ ์ •์˜ 6 2.2 ์„ ๋ฐ•์˜ ์ผ๋ฐ˜์ ์ธ 6์ž์œ ๋„ ์šด๋™๋ฐฉ์ •์‹ 7 2.3 ์„ ๋ฐ• ํ†ตํ•ฉ์ œ์–ด์‹œ์Šคํ…œ์šฉ 3์ž์œ ๋„ ์šด๋™๋ฐฉ์ •์‹ 16 ์ œ3์žฅ ์˜คํผ๋ ˆ์ดํ„ฐ ์กฐ์ž‘๋ช…๋ น ์ธ์‹๊ณผ ๋ช…๋ น๋ณ€์ˆ˜ ๊ธฐ์ค€๊ฐ’ ์ƒ์„ฑ 20 3.1 ์˜คํผ๋ ˆ์ดํ„ฐ ์กฐ์ž‘๋ช…๋ น์˜ ์ •์˜ 20 3.2 ๋ช…๋ น์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋ช…๋ น์ž…๋ ฅ ๊ธฐ์ค€๊ฐ’ ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 23 ์ œ4์žฅ ์š”๊ตฌ์ถ”๋ ฅ๊ณผ ์š”๊ตฌ์ถ”๋ ฅ๋ชจ๋ฉ˜ํŠธ์˜ ๊ณ„์‚ฐ 41 4.1 ์š”๊ตฌ์ถ”๋ ฅ๊ณผ ์š”๊ตฌ์ถ”๋ ฅ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ 3์ž์œ ๋„ ๋น„์„ ํ˜• ... 41 4.2 ์š”๊ตฌ ์„ ๊ฐ€์†๋„์™€ ์š”๊ตฌ ๊ฐ๊ฐ€์†๋„์˜ ๊ณ„์‚ฐ 43 ์ œ 5 ์žฅ ์ถ”๋ ฅํ• ๋‹น์•Œ๊ณ ๋ฆฌ์ฆ˜ 46 5.1 ์ด๋™๋ช…๋ น ๋ชจ๋“œ1โˆผ๋ชจ๋“œ6์— ๋Œ€ํ•œ ์ถ”๋ ฅ ํ• ๋‹น์•Œ๊ณ ๋ฆฌ์ฆ˜ 47 5.2 ์„ ์ˆ˜์ค‘์‹ฌ ์„ ํšŒ๋ช…๋ น ๋ชจ๋“œ7์— ๋Œ€ํ•œ ์ถ”๋ ฅ ํ• ๋‹น์•Œ๊ณ ๋ฆฌ์ฆ˜ 49 5.3 ๋ฌด๊ฒŒ์ค‘์‹ฌ ์„ ํšŒ๋ช…๋ น ๋ชจ๋“œ8์— ๋Œ€ํ•œ ์ถ”๋ ฅ ํ• ๋‹น์•Œ๊ณ ๋ฆฌ์ฆ˜ 51 5.4 ์„ ๋ฏธ์ค‘์‹ฌ ์„ ํšŒ๋ช…๋ น ๋ชจ๋“œ9์— ๋Œ€ํ•œ ์ถ”๋ ฅ ํ• ๋‹น์•Œ๊ณ ๋ฆฌ์ฆ˜ 53 5.5 ๋ช…๋ น๋ชจ๋“œ์— ๋”ฐ๋ฅธ Rudder์˜ ํƒ€๊ฐ๋ช…๋ น ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 54 ์ œ 6 ์žฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๊ณ ์ฐฐ 58 6.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์šฉ ์„ ๋ฐ•์ œ์› ๋ฐ ์œ ์ฒด๋ ฅ ๋ฏธ๊ณ„์ˆ˜ 58 6.2 ์„ ๋ฐ• ํ†ตํ•ฉ์ œ์–ด์‹œ์Šคํ…œ์˜ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ๊ตฌ์„ฑ 62 6.3 ์„ ๋ฐ• ํ†ตํ•ฉ์ œ์–ด์‹œ์Šคํ…œ์„ ์ด์šฉํ•œ ์„ ๋ฐ•์˜ ์กฐ์ข…์„ฑ๋Šฅ ํ™•์ธ 69 ์ œ7์žฅ ๊ฒฐ๋ก  92 ์ฐธ๊ณ ๋ฌธํ—Œ 9

    Closed-loop separation control system design using model-based observer

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ๋Š” ์œ ๋™ ๋ฐ•๋ฆฌ ์ƒ์—์„œ์˜ synthetic jet์˜ ํšจ๊ณผ๋ฅผ ํŒŒ์•…ํ•˜๊ณ  synthetic jet์„ ์ด์šฉํ•œ ์œ ๋™ ๋ฐ•๋ฆฌ ํ๋ฃจํ”„ ์ œ์–ด ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•œ๋‹ค. ์œ ๋™ ๋ฐ•๋ฆฌ ํ๋ฃจํ”„ ์ œ์–ด ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๋Š” ์œ ๋™ ๋ชจ๋ธ์„ ์ด์šฉํ•œ๋‹ค. synthetic jet์˜ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์œ ๋™ ๋ชจ๋ธ์ด ์œ ๋„๋˜๋ฉฐ, ํ’๋™ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์œ ๋™ ๋ชจ๋ธ์˜ ๋ณ€์ˆ˜๋“ค์„ ์ถ”์ •ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ•๋ฆฌ์˜ ํšจ๊ณผ์ ์ธ ์ถ”์ •์„ ์œ„ํ•œ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ด€์ธก๊ธฐ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ด€์ธก๊ธฐ๋ฅผ ์ด์šฉํ•œ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ, ํšจ๊ณผ์ ์ธ ์œ ๋™ ์ œ์–ด ์‹œ์Šคํ…œ ์„ค๊ณ„์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํŒŒ์•…ํ•œ๋‹ค.The objective of this research is to assess the effect of synthetic jets on flow separation and provide a feedback control strategy for flow separation using synthetic jets. A feedback control loop is crucial for the efficient operation of synthetic jets. Constructing the flow model with synthetic jet actuators is important to accomplish such feedback control. The mathematical model whose structures are based on physical knowledge of synthetic jets is derived to estimate the model coefficients from experimental data. In order to estimate the separation, this research employs an observer. The results performed with an observer, it showed the possibility of reliable flow control system design using model-based observer.This work was supported by Defense Acquisition Program Administration and Agency for Defense Development(UC100031JD).OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/28SEQ:28PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๋ชจl๋ธ_๊ธฐ๋ฐ˜_๊ด€์ธก๊ธฐ๋ฅผ_์ด์šฉํ•œ_ํ๋ฃจํ”„_๋ฐ•๋ฆฌ_์ œ์–ด_์‹œ์Šคํ…œ_์„ค๊ณ„.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    ํ๋ฃจํ”„ ๋ฐ•๋ฆฌ ์œ ๋™ ์ œ์–ด๋ฅผ ์œ„ํ•œ ํšจ๊ณผ์ ์ธ ๋น„๋ชจ๋ธ ๋ฐ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ œ์–ด๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2013. 8. ๊น€ํ˜„์ง„.๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐ•๋ฆฌ ์œ ๋™ ์ œ์–ด์— ๋Œ€ํ•œ ๋น„๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ ์‘ ์—ญ๋ณ€ํ™˜ ์ œ์–ด๊ธฐ์™€ proper orthogonal decomposition์„ ์ด์šฉํ•œ ์œ ๋™ ๋ชจ๋ธ๋ง ๋ฐ ๋ณ€ํ˜•๋œ ์ด์ฐจ ํ™•๋ฅ  ์ถ”์ • ๊ธฐ๋ฒ•๊ณผ ํ†ตํ•ฉ๋œ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์œ ๋™ ์ œ์–ด๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ˆ๋œ ๋ฐ•๋ฆฌ ์œ ๋™์˜ ์ œ์–ด ๊ธฐ๋ฒ•์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ’๋™ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์‹ค์‹œ๊ฐ„ ์ธก์ •์„ ์œ„ํ•˜์—ฌ MEMS ์••๋ ฅ ์„ผ์„œ ๋ฐ Synthetic jet ๊ตฌ๋™๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋น„๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ, ๋ณธ๋ž˜์˜ ๋น„์„ ํ˜• ํŠน์„ฑ์„ ๊ฐ–๋Š” ๋ฐ•๋ฆฌ ์œ ๋™์— ๋Œ€ํ•œ ์ ์‘ ํ•„ํ„ฐ๋ง ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์ •๋ฐ€ํ•œ ์‹ค์‹œํ•œ ๋ณ€ํ™˜ ์œ ๋™ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜๊ณ  ๋ฐ˜๋ณต ์‹ ๊ฒฝํšŒ๋กœ๋ง ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์ ์‘ ์•ž๋จน์ž„ ์ œ์–ด ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜๊ณ  ๋ชจ๋ธ ์ž์œ  ๊ธฐ๋ฒ•์˜ ์ผ์ข…์ธ ๊ทน๊ฐ’ ์ถ”์ข… ๊ธฐ๋ฒ•๊ณผ ํ†ตํ•ฉํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋น„๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋ฐ•๋ฆฌ ์œ ๋™์˜ ์ƒํƒœ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ด๊ฐ€๋Š” ๊ฒƒ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ, ๋„๋ฆฌ ์•Œ๋ ค์ง„ ์ถ•์†Œ ์œ ๋™ ๋ชจ๋ธ์€ ๋ณต์žกํ•˜๊ณ  ๊ณ„์‚ฐ์ ์ธ ์ธก๋ฉด์—์„œ ๋น„ํšจ์œจ์ ์ด๋‹ค. ์ œ์•ˆ๋œ proper orthogonal decomposition์„ ์ด์šฉํ•œ ์œ ๋™ ๋ชจ๋ธ๋ง์„ ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ  ์ด๋ฅผ ์ˆ˜์น˜์ , ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์œ ๋™ ๋ชจ๋ธ๋ง์„ ๋ฐ”ํƒ•์œผ๋กœ PIV์™€ ๊ฐ™์€ ๊ณ ๊ฐ€์˜ ์žฅ๋น„ ์—†์ด๋„ ์‹ค์‹œ๊ฐ„ ์œ ๋™์˜ ์ƒํƒœ๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ์œ ๋™ ๋ชจ๋ธ๋ง์„ ๋ฐ”ํƒ•์œผ๋กœ ํšจ๊ณผ์ ์ธ ์œ ๋™ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆ์„ ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋น„๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์œ ๋™ ์ œ์–ด ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋ฐ•๋ฆฌ ์œ ๋™์˜ ํšจ๊ณผ์ ์ธ ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๊ทธ์— ๋”ฐ๋ผ ํ–ฅ์ƒ๋œ ์œ ๋™ ์ƒํƒœ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ด๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์˜ ์ธก๋ฉด์—์„œ ๋งค์šฐ ํšจ๊ณผ์ ์ธ ์—ฐ๊ตฌ๋กœ ํ–ฅํ›„ ๋ฐ•๋ฆฌ ์œ ๋™ ์ œ์–ด ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ์˜ ๋‹ค์–‘ํ•˜๊ฒŒ ์ ์šฉ ๋ฐ ์‘์šฉ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.This dissertation involves an active flow control system for the separated flow over an airfoil (NACA 64A210) and wing of the unmanned combat aerial vehicle (UCAV) model in a subsonic wind tunnel. An active flow control system is mainly composed of the piezoelectrically driven synthetic jet actuator, pressure sensors and closed-loop controllers including model-free and model-based controller. The objective of this dissertation is to develop two effective closed-loop control strategies for the flow separation problem. Before performing the closed-loop experiments, the effectiveness of the jet actuation is first investigated by open-loop tests in various operating conditions to investigate the suitable control variable. The pressure gradient, which is calculated from the difference of mean pressure coefficients between two sensor positions, is a criterion of flow reattachment and pressure recovery. Therefore, the pressure gradient is selected as control parameter to be controlled for separated flow. As the first approach, the model-free adaptive controller is developed for controlling the separated flow. The degree of the separated flow which can be expressed as the pressure gradient must effectively and efficiently be controlled by using the adaptive inverse control and extremum seeking control schemes. In the model-free adaptive approach, the adaptive inverse controller and extremum seeking controller are used to obtain the actuation frequency and magnitude of the piezoelectric driven actuators, respectively. Simulation and experimental results based on the model-free adaptive control system demonstrate the satisfactory tracking performance for the pressure recovery. The turbulent kinetic energy (TKE) can be regarded as the kinetic energy of the dynamic portion of the turbulent fluid flow and estimated by the proper orthogonal decomposition and the modified stochastic estimation method. Using TKE as an alternative control parameter, the feasibility in terms of the tracking performance of TKE is investigated using the proposed model-free adaptive controller in combination with a modified stochastic estimation method that estimates the TKE. Second, for the model-based strategy, this dissertation presents a new reduced order model that consists of ideas from subspace identification, modified stochastic estimation and Proper Orthogonal Decmposition (POD) methods. The subspace identification model is developed based on the computational fluid dynamics results of the separated flow. The POD and modified quadratic stochastic estimation methods which describe the fluctuating characteristics of the flow are used in combination with the linear model obtained from the subspace identification method. The proposed reduced order model is validated by simulation and experimental results. Based on the proposed reduced order model, the model-based controller is successfully evaluated delaying the flow separation in the experimental setup involving the NACA 64A210 airfoil, synthetic jet actuators and pressure sensors.Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Model-Free Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Model-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Thesis Orgarnization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Experimental Setup and Baseline Analysis . . . . . . . . . . . . . . . . . . . . . 11 2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Open-Loop Experimental Results and Analysis . . . . . . . . . . . . . . . 18 2.2.1 Baseline Analysis for Closed-Loop Control . . . . . . . . . . . . . . 18 2.2.2 Open-Loop Experimental Results of an NACA 64A210 Airfoil . . . 20 2.2.3 Open-Loop Experimental Results of an UCAV Model . . . . . . . . 40 3 Model-Free Adaptive Control for Separated Flow . . . . . . . . . . . . . . . . . 52 3.1 Closed-Loop Feedback Control Strategies . . . . . . . . . . . . . . . . . . . 52 3.1.1 Closed-Loop Feedback Control System Using a PID Control Scheme 53 3.1.2 Closed-Loop Feedback Control System Using an Adaptive Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.3 Adaptive Plant Identification . . . . . . . . . . . . . . . . . . . . . 56 3.1.4 Adaptive Feedforward Control . . . . . . . . . . . . . . . . . . . . . 59 3.1.5 Adaptive Inverse Control Combined With an Extremum-Seeking Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 Model-Free Adaptive Control with Proper Orthogonal Decomposition and Modified Stochastic Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1 Flow Field Estimation Technique . . . . . . . . . . . . . . . . . . . . . . . 77 4.1.1 Classical Proper Orthogonal Decomposition . . . . . . . . . . . . . 78 4.1.2 Modified Stochastic Estimation . . . . . . . . . . . . . . . . . . . . 81 4.1.3 The Model-Free Adaptive Control with POD and MLSE . . . . . . 82 4.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Model-Based Control Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.1 Reduced-Order Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.1 Projection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1.2 Reduced-Order Model . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1.3 Quadratic Stochastic Estimation Modification of Flow Fields . . . . 105 5.2 Design of the Model-Based Controller . . . . . . . . . . . . . . . . . . . . . 108 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.1 Summary of the Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Docto

    Critical Review on Social Capital and Governance Studies

    No full text
    corecore