13 research outputs found

    Identification and characterization of a putative magnesium transport associated gene mgtC in Klebsiella pneumoniae

    No full text
    近二十年來,一種新型的侵襲性克雷伯氏肺炎桿菌逐漸成為全球性的重要社區感染病原菌,會引發細菌性肝膿瘍 (pyogenic liver abscess, PLA) 合併菌血症及轉移性眼內炎或腦膜炎,糖尿病人在社區感染中佔了45-75% 的比例。本實驗室之前利用克雷伯氏肺炎桿菌基因微陣列,尋找野生株在糖尿病人血清的刺激條件下表現量有差異的基因,經過real-time PCR確認,mgtC為表現量上升的基因之一,本研究發現mgtC基因分布情形在PLA菌株較non-PLA菌株為高 (98% vs.75%),具有統計上的意義 (P = 0.004,chi-square test)。ΔmgtC基因剔除株在鎂離子濃度1.8mM、0.7mM的NCE培養液中,生長的情形和野生株並沒有差異,但利用穿透式電子顯微鏡 (transmission electron microscopy, TEM) 觀察ΔmgtC基因剔除株發現有菌體變長 (cell elongation) 且細菌聚集 (autoaggregation) 的現象,另外觀察到纖毛 (fimbriae) 的表現。利用微陣列找到ΔmgtC基因突變株在低鎂NCE培養液條件下第一型 (fim) 及第三型 (mrk) 線毛基因表現量上升,推測mgtC基因可能扮演抑制線毛表現的角色。利用穿透式電子顯微鏡觀察ΔmgtC mrkA、ΔmgtC fimA、ΔmrkA fimA及ΔmgtC mrkA fimA基因剔除株線毛的表現,發現ΔmgtC mrkA及ΔmgtC fimA基因剔除株皆有線毛的表現,但ΔmrkA fimA及ΔmgtC mrkA fimA基因剔除株皆沒有線毛的表現。過去文獻報告,糖尿病人血清鎂離子濃度較健康人低,因此目前推測,mgtC基因可能可以在低鎂濃度的糖尿病人血清中,有利於克雷伯氏肺炎桿菌致病因子的表現,初步以C57BL/6J老鼠腹膜腔或胃內感染野生株或ΔmgtC基因剔除株,半致死劑量沒有差異,而以腹膜腔或胃內感染B6.V-Lepob/J第二型糖尿病鼠,半致死劑量也沒有差異。進一步以腹膜腔注射方式同時感染野生株及ΔmgtC基因剔除株觀察在糖尿病鼠內競爭的情形,發現ΔmgtC基因剔除株競爭力為野生株的3倍,同樣以腹腔注射同時感染野生株及ΔmgtC mrkA fimA基因剔除株,競爭只略強於野生株,ΔmgtC mrkA fimA基因剔除株競爭力為野生株的2倍。綜上所述,利用穿透式電子顯微鏡觀察剔除株線毛表現與否,與小鼠活體內競爭情形,證實線毛的表現可能為第一型 (fim) 或第三型 (mrk) 線毛單一型表現抑或是兩者同時表現,有待進一步實驗證實。In the past 20 years, community-acquired pyogenic liver abscess (PLA) caused by a new type of invasive Klebsiella pneumoniae has become a global emerging disease. Some patients develop serious complications such as bacteremia, metastatic meningitis or endophthalmitis. Diabetes mellitus (DM) is a predisposing condition, with a prevalence ranging from 45% to 75% in patients with K. pneumoniae liver abscess. In the previous study, we used a K. pneumoniae microarray to compare transcriptional profiles between wild-type strains and ΔmgtC mutants induced by the DM serum. The microarray data were confirmed by real-time polymerase chain reaction (real-time PCR), and we found mgtC gene expression was increased. In this study, we found mgtC was significantly more prevalent in PLA strains. The growth of the ΔmgtC mutants were similar to the growth of wild-type strains in the NCE liquid medium supplemented with 1.8mM or 0.7mM Mg2+. The ΔmgtC strains showed autoaggregated bacteria in 10μM Mg2+ medium. Morphology analysis evaluated by TEM indicated that ΔmgtC mutants exhibited cell elongation as well as fimbriae expression in 1.8mM、0.7mM Mg2+ medium. Therefore, we used a K. pneumoniae microarray to compare transcriptional profiles between wild-type strains andΔmgtC mutants induced by 10μM Mg2+ medium. We discovered that type 1 (fim) and type 3 (mrk) fimbriae genes expression were increased in ΔmgtC mutants grown in 10μM Mg2+ medium by using microarray analysis. These results suggested that mgtC may play a role in a repressor system for those fimbriae expression. Fimbriae expression of ΔmgtC mrkA, ΔmgtC fimA double mutants or ΔmgtC mrkA fimA triple mutants was examined by TEM. ΔmgtC mrkA and ΔmgtC fimA double mutants produced fimbriae, but ΔmgtC mrkA fimA triple mutants had no fimbriae extended. Hypomagnesemia has been reported to occur among type 2 DM patients. It was indicated that mgtC gene may induce the virulence factors of K. pneumoniae to express when K. pneumoniae was exposed to low diabetic serum Mg concentration. There was no difference in LD50 between wide-type strains and ΔmgtC mutants by i.g. or i.p. infected C57BL/6J and B6.V-Lepob/J mice. We coinfected wide-type strains with ΔmgtC mutants by i.p. to investigate which is more competitive in type 2 DM mice. ΔmgtC mutant out competed the wild type strain about 3-fold. Competition of ΔmgtC mrkA fimA mutants and wide-type strains in vivo indicated that ΔmgtC mrkA fimA mutant was about 2 times competitive than wild-type strains but weaker than ΔmgtC mutant. These data suggested that either or both type 1 (fim) and type 3 (mrk) gene expressed for fimbriae production.口試委員會審定書.................................................. Ⅰ謝.............................................................. Ⅱ文摘要.......................................................... Ⅲ文摘要.......................................................... Ⅴ一章、緒論.......................................................1二章、材料與方法.................................................5.克雷伯氏肺炎桿菌菌株........................................5.聚合酶鏈鎖反應 (polymerase chain reaction, PCR) .................5.萃取克雷伯氏肺炎桿菌 total RNA.............................. 6.克雷伯氏肺炎桿菌基因微陣列 .................................7.反轉錄定量聚合酶鏈鎖反應 (RT-qPCR) ........................ 10.建構克雷伯氏肺炎桿菌基因剔除株 ............................12.建構ΔmgtC突變株的染色體互補株(cis-complementation) .........13.不同鎂離子濃度NCE培養液生長觀察 .........................14.利用穿透式電子顯微鏡觀察線毛表現 ..........................150.利用光學顯微鏡 (light microscope)觀察菌體變長情形 ........... 151.測量血清中鎂離子的濃度.....................................162.動物實驗...................................................16三章、 結果......................................................20.利用克雷伯氏肺炎桿菌基因微陣列尋找在糖尿病人血清條件下表現量上升的基因.................................................20.利用real-time PCR 確認微陣列結果,確定mgtC基因在糖尿病人血清條件下表現量上升...........................................20.mgtC基因在臨床菌株中的分布比例............................21.比較NTUH-K2044野生株在鎂離子濃度10mM、1.8mM、0.7mM與10μM NCE培養液中mgtC基因的RNA表現量........................21.利用RT-PCR確認mgtC基因及其下游KP2872基因為同一個操縱組 (operon) ................................................... 22.NTUH-K2044野生株及 ΔmgtC基因剔除株KP2872基因 RNA表現量.........................................................22.比較NTUH-K2044野生株及ΔmgtC基因剔除株隔夜生長情形......23.利用穿透式電子顯微鏡 (transmission electron microscopy, TEM) 觀察ΔmgtC基因剔除株在鎂離子濃度10mM、1.8mM、0.7mM與10μM NCE培養液中表型 (phenotype) 的改變.............................23.比較NTUH-K2044野生株及ΔmgtC基因剔除株在鎂離子濃度10mM、1.8mM與0.7mM NCE培養液中菌體變長的情形................. 240.建構NTUH-K2044ΔmgtC::mgtC染色體互補株 (cis-complementation)並觀察其表型.................................................241.利用克雷伯氏肺炎桿菌基因微陣列尋找mgtC基因在鎂離子濃度10mM與10μM 環境下所調控的基因................................252.NTUH-K2044野生株、ΔmgtC基因剔除株fim及mrk基因表現量情形.........................................................263.NTUH-K2044野生株、ΔmrkA基因剔除株fimD基因表現量情形....264.ΔmrkA fimA基因剔除株、ΔmgtC fimA基因剔除株、ΔmgtC mrkA基因剔除株、ΔmgtC mrkA fimA基因剔除株在鎂離子濃度10mM、1.8mM與0.7mM NCE培養液下之線毛表現情形......................... 275.血清中鎂離子濃度的測量.................................... 276.探討NTUH-K2044野生株及ΔmgtC基因剔除株對小鼠的致病力... 28四章、 總結與討論................................................30五章、 參考文獻..................................................70目錄一、研究中使用的細菌菌株及載體....................................36二、實驗中使用到的引子........................................... 38三、利用克雷伯氏肺炎桿菌基因微陣列工具,以NTUH-K2044野生株培養在LB培養液為對照組、NTUH-K2044野生株培養在含有50%糖尿病人血清之LB培養液中為實驗組,比較兩者基因的RNA表現量.............40四、以PCR觀察PLA (pyogenic liver abscess) 與non-PLA strains之mgtC基因的分布.......................................................42五、比較NTUH-K2044野生株及各種克雷伯氏肺炎桿菌基因剔除株在鎂離子濃度10mM及10μM NCE minimal medium生長下型態上的改變.......43六、利用光學顯微鏡 (microscope) 觀察在鎂離子濃度10mM、1.8mM及0.7mM環境下NTUH-K2044野生株、 ΔmgtC基因剔除株及ΔmgtC::mgtC染色體互補菌株菌體變長的情形並計算菌體長度.........................44七、國家動物中心引進美國The Jackson Laboratory第二型糖尿病鼠品種和人類第二型糖尿病症狀與基因背景的比較...........................45八、以腹膜腔注射及胃內感染的方式,比較NTUH-K2044野生株及ΔmgtC基因剔除株對於BALB/cByl、C57BL/6J小鼠及B6.V-Lepob/J第二型糖尿病鼠的致病力...................................................46九、以腹膜腔注射的方式,比較NTUH-K2044野生株及ΔmgtC基因剔除株在C57BL/6J小鼠及B6.V-Lepob/J和BKS.Cg-m +/+ Leprdb/J第二型糖尿病鼠體內的競爭情形...............................................47十、利用克雷伯氏肺炎桿菌基因微陣列工具,以NTUH-K2044野生株培養在鎂離子濃度10μM NCE minimal medium為對照組、ΔmgtC基因剔除株培養在鎂離子濃度10μM NCE minimal medium為實驗組,比較兩者基因的RNA表現量..................................................48十一、利用穿透式電子顯微鏡 (transmission electron microscopy, TEM) 觀察NTUH-K2044野生株及各克雷伯氏肺炎桿菌基因剔除株線毛表現情形.........................................................49目錄一、利用克雷伯氏肺炎桿菌基因微陣列比較培養在LB培養液之NTUH-K2044野生株與培養在50% 糖尿病血清的LB培養液之NTUH-K2044野生株mRNA表現量的差異...........................................50二、利用Real-time PCR比較NTUH-K2044野生株在LB培養液及含有50%糖尿病人血清之LB培養液中mgtC基因的RNA表現量...............51三、 (A) 利用NCBI BLAST比較克雷伯氏肺炎桿菌、Salmonella enterica和Salmonella typhimurium此三株菌之mgtC基因序列相似度,利用CLUSTALW找出最具保守性的基因序列設計引子 (MgtC-56F、MgtC-511R) 。 (B) NTUH-K2044野生株染色體上mgtC (KP 2873) 及附近基因相對位置和方向。.......................................52四、利用Real-time PCR比較NTUH-K2044野生株在不同鎂離子濃度10mM、1.8mM、0.7mM、10µM NCE培養液中mgtC基因的RNA表現量........54五、利用RT-PCR確認mgtC基因及其下游KP2872基因為同一個操縱組 (operon)......................................................55六、NTUH-K2044野生株、ΔmgtC基因剔除株和ΔmgtC::mgtC染色體互補株在鎂離子濃度10μM NCE培養液中mgtC基因的RNA表現量,NTUH-K2044野生株和ΔmgtC基因剔除株在鎂離子濃度10mM、1.8mM與0.7mM NCE培養液中KP2872基因的RNA表現量..............................56七、pKO3-Km基因剔除載體及突變株篩選過程.........................57八、pKO3-Km基因互補載體及染色體互補株篩選過程...................58九、在鎂離子濃度10mM、1.8mM、0.7mM與10μM NCE培養液中,比較 NTUH-K2044野生株和ΔmgtC基因剔除株生長情形................59十、觀察NTUH-K2044 野生株、ΔmgtC基因剔除株及ΔmgtC::mgtC染色體互補菌株在鎂離子濃度10mM及10μM環境下細菌聚集 (autoaggregation) 的現象.......................................................60十一、利用穿透式電子顯微鏡 (TEM) 觀察菌體型態改變................61十二、利用穿透式電子顯微鏡 (TEM) 觀察NTUH-K2044 野生株、ΔmgtC基因剔除株及NTUH-K2044 ΔmgtC::mgtC染色體互補株在鎂離子濃度10μM環境下線毛 (fimbriae)表現......................................62十三、克雷伯氏肺炎桿菌培養在鎂離子濃度10μM NCE培養液下NTUH-K2044野生株與ΔmgtC基因剔除株mRNA表現量的差異..................64十四、NTUH-K2044野生株和ΔmgtC基因剔除株、 NTUH-K2044野生株和ΔmrkA基因剔除株在鎂離子濃度1.8mM、0.7mM NCE培養液中mrkA與fim基因的RNA表現量............................................66十五、利用穿透式電子顯微鏡 (TEM) 觀察NTUH-K2044野生株及各基因剔除株在鎂離子濃度 10mM 及 1.8mM、0.7mM NCE培養液下生長的線毛 (fimbriae) 表現...............................................67十六、 健康人、第二型糖尿病人及健康小鼠、ob/ob和db/db第二型糖尿病鼠血清中鎂離子濃度的比較.......................................68十七、 糖尿病小鼠以胃內感染的方式餵食NTUH-K2044野生株與ΔmgtC基因突變株的存活比例與時間圖...................................6

    Corpora for Legal Translation: Compilation and Analysis

    No full text
    語料庫語言學及相關技術在翻譯領域中的應用日趨重要,專門語料庫作為特定專業領域的翻譯參考資源,也極具價值。為解決譯者在專門領域的翻譯工作中,可能面臨參考資源不足的問題,本研究嘗試應用現有之軟體資源輔助,建置中英平行結合英文單語之法律語料庫。建置過程採用軟體工具及半自動化方式,進行大批語料處理、自動斷詞、詞性標記、段落(句)對齊,以及詞組對應擷取之工作。建置完成的語料庫,以語料庫軟體輔助,進行關鍵詞、對應詞組、N連詞、雙語關鍵詞檢索,以及單語關鍵詞檢索之分析。研究結果顯示,本文中嘗試採用的語料庫分析方式,可有效幫助譯者取得多種翻譯過程中需要的參考範例。研究過程中取得的關鍵詞、詞組翻譯、常用表達方式和翻譯策略,也可經累積後應用於其他形式的翻譯資源建置。本研究採用的語料庫建置與分析方式,還可應用在其他專門領域之翻譯,以支援譯者工作需求;分析過程中觀察得的許多現象,也值得進一步分析探索,期能貢獻於未來的翻譯實務與研究工作。Corpora, the well-organized bodies of “naturally occurring language data” sampled to represent a variety of language (McEnery, 2003, p. 449), have been making a growing impact in the field of translation (Bernardini, Stewart, & Zanettin, 2003). Scholars have asserted the immense value of corpora as reference tool for translation practice in specialized subject domains (Bowker & Pearson, 2002; Varantola, 2003), where intrinsic features of the language may cause difficulties for the translator. To address the potential lacking in reference tools for specialized translation assignments, this study explores a number of methods and computerized tools in compiling and analyzing a parallel and monolingual corpus of Chinese and English legislation. Incorporating semi-automated tools for text processing, part-of-speech tagging, sentence alignment, and phrasal alignment, this study utilizes keyword analysis, n-gram and n-gram part-of-speech sequence, as well as bilingual and monolingual concordance search to address identification of terminology equivalents, stylistic features, usage patterns, and translation strategies for legal contexts. Findings suggest that with the proposed methods, the corpus compiled in this study could effectively provide a number of information to aid the work of legal translators. The information identified can also be applied to compiling other forms of translation resources. It is hoped that in future research, the corpus tools and approaches employed in this study can be applied to facilitating other specialized fields of translation, and that preliminary findings observed here could be further explored to benefit future work in this discipline

    Molecular Packing Orientations of Poly(3-hexylthiophene) Thin Films on Hydrophobized Surfaces:A Molecular Dynamics Study

    No full text
    我們利用全原子模型的分子動力學模擬及理論計算,探討導電高分子材料聚噻吩(PT)和聚3-己烷噻吩(P3HT)在四種矽烷分子鏈(OTS、ODTS、APS,以及AHS)表面的作用情形;四種矽烷分子鏈涵蓋了接枝鏈長度與末端官能基(甲基和胺基)對於PT或P3HT高分子鏈構形,以及吸附位向的影響。在各組系統中,隨著接枝密度越高,接枝鏈仰角越大,導因於接枝密度上升時,接枝鏈間距將隨之縮短,致使接枝鏈間的凡得瓦作用力提升,因而開始有聚集之型態產生。此外,接枝鏈較長的ODTS系統,分子鏈間凡得瓦吸引力較短鏈段OTS更為強烈,致使在任一接枝密度下,ODTS接枝鏈仰角均比OTS來得大。值得注意的是,OTS與ODTS在接枝密度達100%時為最接近實驗結果之系統,由模擬結果得知,接枝鏈均以全反式構形朝垂直於基板方向向上延伸,致使PT主鏈可受末端甲基上的氫原子所吸附而朝表面平躺。此外,P3HT烷基側鏈水平散佈於基板表面,形成共平面性較好的P3HT分子鏈。而對於含有胺基末端基的系統(APS和AHS),也觀察到相同的接枝密度與接枝鏈長度效應,但含有極性胺基末端基的系統可能受到下方二氧化矽表面氫氧基的吸引(表面氫鍵效應),亦或是受鄰近分子鏈末端的胺基官能基的吸引,致使接枝鏈較易彎折。在實驗系統中,APS末端胺基與表面之氫鍵效應將可能佔據了其他有效的吸附位置,無法形成較高之接枝密度,因而APS之接枝密度約為60%。此時末端胺基易受二氧化矽表面吸附而產生特殊之吸引位向,此位向將可誘導噻吩以垂直位向被吸附至表面,但P3HT烷基側鏈與接枝鏈末端胺基之排斥力,仍將造成P3HT主鏈產生較大之旋扭角,有較差之共平面性。此外,對於長鏈段AHS系統而言,PT主鏈有較差之吸附性,但P3HT可藉由烷基側鏈拉攏高分子鏈至帶有長碳鏈的AHS表面排列,因而部分噻吩仍有機會受到末端胺基的吸引,致使P3HT平均噻吩仰角仍較OTS與ODTS的系統來得大。We employ the all-atom molecular dynamic simulation and the theoretical calculations to study the interaction among polythiophene(PT)、poly(3-hexylthiophene) and four kinds of organosilanes(OTS、ODTS、APS ans AHS);These organosilanes having different chain lengths and terminal functional groups may affect the conformation and the adsorption orientation of PT and P3HT. While considering all these surface treating systems, the elevation angles of the hydrophobic chains grafting on the silicon oxide surface increase with increasing the grafting density and these grafting chains have self-assembled behavior because the van der Waals interaction will be strong with increasing the grafting density. Furthermore, the carbon chain of ODTS is longer than that of OTS, so the van der Waals interaction between ODTS is much stronger than OTS, which results in high elevation angle of ODTS than that of OTS. In our results, when the grafting density of OTS and ODTS reach 100%, OTS and ODTS chains have an all-trans conformation and the methyl group will extend out of the surface normal,and the morphology of OTS and ODTS monolayer is close to the experimental result. In this cases, the thiophene rings are parallel to the substrate and attracted by the hydrogen of methyl group, moreover, the alkyl side chains of P3HT also spread parallel to the substrate, hence P3HT maintains a coplanar structure. For the organosilanes having amino groups, the amino group may be attracted by the hydroxyl group on the silicon oxide surface, or attracted its surrounding amino groups, and therefore the grafting chain would like to bend and deviate from the all-trans conformation. The simulation result quite agree with the experimental data;The amino groups of APS like to be attracted by the hydroxyl group and occupy the active site on the surface, that result in lower grafting density about 60%. In this case, the amino group of APS have a special orientation due to the hydrogen bonding effect with the hydroxyl group on the silicon oxide surface, and the special orientation of the amino group will induce the thiophene rings normal to the substrate to be attracted by the amino group. Nevertheless, repulsive force between the Hydrophobic alkyl side chain of P3HT and the polar amino groups will cause the P3HT main chain to have large distortion and deviate from the coplanar structure. However, the adsorption behavior of PT on AHS surface is poor, because the longer carbon chains with polar amino groups of AHS can interfere the adsorption with thiophene rings. Nevertheless, the alkyl side chain of P3HT can attract with the long carbon chain of AHS and move the polymer chain close to the AHS monolayer, so the thiophene rings may still have an opportunity to interact with the amino groups, hence the average elevation angle of thiophene rings of AHS is still larger than that of OTS and ODTS.中文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥I文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥II錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥IV表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥VI. 前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.1 有機薄膜電晶體概論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.2 位置規則性聚3-烷基噻吩‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5.2.1 P3HT規整度-有序區之排列結構‥‥‥‥‥‥‥‥‥‥‥ 6.2.2 分子量效應-高分子鏈構形&有序結構寬度‥‥‥‥‥‥ 9.2.3 表面改質效應-半導體層/電介質界面處P3HT之排形態‥‥14.3 研究動機‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20. 模擬方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21.1 模擬PT和rr-P3HT與OTS、ODTS、APS以及AHS接枝層的作用情形‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21.1.1勢能函數‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥22.1.2模型建構‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥24.1.3模擬流程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29.2探討甲烷與噻吩單體,以及氨氣與噻吩單體彼此最佳的吸引位 向‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31. 結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 33.1探討四種表面接枝鏈OTS、ODTS、APS以及AHS之構形與排列型 態‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33.2聚噻吩在OTS、ODTS、APS和AHS接枝鏈表面的吸附情形-聚噻吩 主鏈吸引位向之探討‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 37.3 P3HT分別與四組表面接枝鏈作用的情形-P3HT烷基側鏈效應 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥40. 結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥64考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6

    Invertebrate assemblages and carbon budget model of the intertidal Thalassia hemprichii meadow in Dakwan, Southern Taiwan.

    No full text
    海草生長於沿岸淺海域,是主要的初級生產者之一。海草床承載多種生物,為高多樣性之環境。儘管大光地區的泰來草床處於環境嚴苛之潮間帶,其豐富的食物來源及多樣的棲地環境,仍為許多無脊椎動物的棲所。表土無脊椎動物共觀察到30科43種,群集結構在季節及潮位間均有所不同。季節上可分成冬春季及夏秋季,均以菟葵為其優勢種,冬春季有較多的花冠芋螺及薄氏大眼蟹;夏秋季則有較多之大指蝦蛄及整潔鏟足蟹。高潮位處有較多之腹足類及海膽;而低位有較多的甲殼類動物。隨海草的生產力及密度增加表土無脊椎動物而有較多的個體數,然而物種數及多樣性則反之。底土無脊椎動物共觀察到33科42種。海草覆蓋處明顯有較多的物種及個體數。其中海葵為其優勢物種,附著於海草地下莖。底土無脊椎動物在群聚組成上較無季節性變化。本研究再以墾丁大光地區的泰來草床為例,探討海草葉片之生產及其碳收支。結果顯示,海草之生產及其流向隨季節及潮位的不同而有所差異。冬春季約有43.6 g C m-2 month-1之生產量,32%以草食作用進入能量循環,其餘因衰老而成落葉。其中有69%之落葉留在海草床中;32%漂離至鄰近的生態系統。而夏秋季之落葉生產力約為冬春季的4倍,其中只有20%直接被草食動物所利用;68%之落葉都將漂離海草床。魚類及無脊椎動物所消耗之百分比在潮位間有所差異,高位魚類消耗佔草食作用量的81%,無脊椎動物佔19%;低位魚類及無脊椎動物所消耗之比例相當,分別為53%及47%。海草床不僅提供魚類及無脊椎動物食物來源及棲息空間,漂離海草床之碎屑更成為鄰近生態系統的碳源,為沿岸重要的棲地環境,應加以保育。Seagrass is one of major primary producers in coastal ecosystems. It is known that seagrass meadows may serve as nursery habitats for a variety of fauna. However, the invertebrates in the intertidal seagrass bed of Thalassia hemprichii at Dakwan has not been quantified. One year survey found that there were about 30 families and 43 species of epifauna. The assemblage varied with season and location. In winter-spring, Conus coronatus and Macrophthalmus boscii were more abundant, but Gondactylus chiragra and Palapedia integra were more abundant in summer-fall. In the high-elevation bed, Gastropod and sea urchin were more abundant, but crustacean were more abundant in the low-elevation bed. The abundance of epifauna correlated positively with productivity and shoot density of seagrass, but species number and diversity index correlated negatively. There were about 33 families and 42 species of infauna. The abundance and species richness were significantly higher in seagrass beds than in unvegetated areas. The infauna assemblage showed little seasonal variation. Sea anemone was the most dominant species, growing on the rhizomes of seagrass. We also quantified the carbon budget of T. hemprichii. The results showed that significant effects of season and location on leaf production and detritus flows of T. hemprichii. In winter-spring, seagrass produced 43.6 g C m-2 month-1, herbivores removed about 31% of that, and the remainder became detritus. About 69% of the detritus remained on the seagrass meadow, and the rest were exported outside to neighboring ecosystems by waves and currents. In summer-fall, the leaf production of seagrass was 4 times higher than that in winter-spring. Only 20% entered the food web via grazing pathways and 68% of the detritus were exported outside. Consumption by fish and invertebrates differed between high- and low-elevation bed. In the high-elevation bed, about 81% was consumed by fish, and only 19% was consumed by invertebrates. In the low-elevation bed, consumptions by fish and invertebrates were about the same percentages. Our results showed that the importance of seagrass in providing food and habitat for fish and invertebrates, but also exporting significant carbon sources to neighboring coastal ecosystems.目次 中文摘要……………………………………………………………………………….i 英文摘要………………………………………………………………………………ii 目次…………………………………………………………………………………...iii 表目次…………………………………………………………………….…...……...v 圖目次………………………………………………………………….………..…...vi ㄧ、前言…………………………………………………………………………….....1 1. 海草介紹與分布………………………………………………………………..1 2. 海草生態功能…………………………………………………………………..1 3. 海草床無脊椎動物相…………………………………………………………..2 4. 海草的碳收支…………………………………………………………………..3 5. 研究動機與目的………………………………………………………………..4 二、材料與方法………………………………………………………………………5 1. 研究地點與時間………………………………………………………………..5 1-1 研究地點與材料………………..………………………………………….5 1.2 研究採樣時間………………………………………...……………………5 2. 環境因子………………………………………………………………...……...5 2-1 水層環境因子……………………………………..……………………….5 2-2 海草型質……………………………………..…………………………….6 2-3 底土環境因子………………………………………………………..…….8 3. 無脊椎動物相調查……………………………………………..…………...….9 3-1 表土無脊椎動物……………………………………………………….......9 3-2 底土無脊椎動物....……………………………………………..………...10 4. 泰來草碳收支模式…………………………….………..…………………….10 4-1 草食作用量…………………………………..…………………………...10 4-2 碎屑殘留量……………………………………………………..………...10 5. 數據分析…………………………………………………..………………….11 5-1 雙向變方分析………………………………………………..…………...11 5-2 群集分析………………………………………………..………………...11 5-3 物種與環境因子………………………………………………..………...12 三、結果…………………………………………………..…………………………13 1. 環境因子………………………………………………………...…………….13 1-1 水溫………………………………………………………..……………...13 1-2 鹽度……………………………………………………..…………...……13 1-3 光遞減係數……………………………………………………..………...13 1-4 海草形質………………………………………………………..………...13 1-5 潮汐、波高…………………………………………………………………14 2. 表土無脊椎動物……………………………..……………………………….14 2-1 表土無脊椎動物相調查……………………………………..…………...14 2-2 表土無脊椎動物群集組成……………………………………..………...15 2-3 表土無脊椎動物與環境因子間的關係……………………..…………...15 2-3.1 斯皮爾曼等級相關分析………………..……………………………15 2-3.2 BIOENV分析………………..……………………………………….16 3. 底土無脊椎動物…………………...………………………………………….16 3-1 環境因子………………………………..………………………………...16 3-2 底土無脊椎動物相調查………………………………………………….16 3-3 底土無脊椎生物量…………………………………………………..…...17 3-4 底土無脊椎動物與環境因子間的關係………………………………….18 3-4.1 斯皮爾曼等級相關分析……………………………………………..18 3-4.2 BIOENV分析…………………………………………………………18 3.4.3 冗餘分析……………………………………………………………..18 4. 碳收支……………………………………………………...………………….19 4-1 葉面積……………………………………………………………..……...19 4-2 草食作用量…………………………………………………………..…...19 4-3 單位時間之草食作用量………………………………………………….20 4-4 魚類及無脊椎動物之草食作用量…………………………………….....20 4-5 碎屑…………………………………..……………………………….…..20 4-6 碳收支………………………………………..…………………………...21 四、討論……………………………………………………………………………..22 1. 環境因子………………………………………………...…………………….22 2. 無脊椎動物調查……………….………………………………..…………….23 2-1 多樣性.......……………………………………………………………….23 2-2 環境因子對無脊椎動物之影響………………………………………….25 2-3 海草與無脊椎動物的交互作用………………………………………….25 3. 碳收支……………………………………………………………...………….26 3-1 草食作用………………………………………………………………….26 3-2 碎屑……………………………………………………………………….28 3-3 海草碳收支……………………………………………………………….29 4. 泰來草之重要性及保育…………………………………………...………….29 五、結論……………………………………………………………………………..31 六、參考文獻………………………………………………………………………..32 會議紀錄…………………………………………………………………………….79 表目次 表1、底質粒度中間值分類表。……………………………………………………42 表2、底質粒徑篩選度分級表。……………………………………………………42 表3、表土環境因子之雙向變方分析。……………………………………………43 表4、表土生物因子之雙向變方分析。……………………………………………44 表5、大光泰來草區高低位表土無脊椎動物種類及數量。………………………46 表6、無脊椎動物於冬春及夏秋季之優勢物種及其貢獻百分比。………………46 表7、造成表土無脊椎動物於高低位間差異之物種及其貢獻度。………………47 表8、表土無脊椎動物個體數、物種數及多樣性與環境因子之相關係數。……48 表9、底棲無脊椎生物及環境因子之雙向變方分析。……………………………49 表10、大光泰來草及沙地區底土間無脊椎動物種類及數量。……………………50 表11、底土無脊椎動物於海草及沙地區之優勢物種及其貢獻百分比。……..…51 表12、造成底土無脊椎動物於海草及沙地間差異之物種及貢獻度。……………53 表13、底土無脊椎動物個體數、物種數及多樣性與環境因子之相關係數。...…53 表14、底土無脊椎動物與環境因子之冗餘分析摘要。……………………………53 表15、底土無脊椎與環境因子之蒙特卡羅檢驗的顯著相關。……………………54 表16、底土無脊椎之環境因子與冗餘分析排序軸之相關程度。…………………54 表17、各地區之海草能量流向比較。………………………………………………55 圖目次 圖1、實驗地點墾丁大光地區位置圖。……………………………………………56 圖2、水溫之季節變化。……………………………………………………………56 圖3、鹽度之季節變化。……………………………………………………………57 圖4、光遞減係數之季節變化。……………………………………………………57 圖5、海草覆蓋度之季節變化。……………………………………………………58 圖6、海草植株密度之季節變化。…………………………………………………58 圖7、海草庇護高度之季節變化。…………………………………………………59 圖8、地上部生物量之季節變化。…………………………………………………59 圖9、地下部生物量之季節變化。………….…..…………………………………60 圖10、地上部與地下部生物量比值之季節變化。……..…….……………………60 圖11、海草生長速率之季節變化。………….………...……………………………61 圖12、海草附生藻之季節變化。……………...……….……………………………61 圖13、大光海草床各實驗月份之潮係變化圖。……………………………………62 圖14、各季節海草暴露於空氣中佔實驗時間之百分比。…………………………62 圖15、墾丁後壁湖於實驗期間之最大示性波高及平均波高。……………………62 圖16、高低位表土無脊椎動物總個體數之季節變化。……………………………63 圖17、高低位表土無脊椎總物種數之季節變化。…………………………………63 圖18、高低位表土無脊椎多樣性指數之季節變化。………………………………63 圖19、大光海草床表土無脊椎於高低位之物種組成MDS分析結果。…..………64 圖20、大光海草床表土無脊椎動物之clustering分析結果。……………………64 圖21、大光海草床海草及沙地區底土粒徑中間值之季節變化。…………………65 圖22、大光海草床海草及沙地區底土粉泥黏土含量之季節變化。………………65 圖23、大光海草床海草及沙地區底土篩選係數之季節變化。……………………65 圖24、大光海草床底海草及沙地區土有機質之季節變化。………………………66 圖25、海草地上部及地下部生物量亁重與海草株密度之季節變化。……………66 圖26、海草及沙地區底土無脊椎動物總個體數之季節變化。……………………67 圖27、海草及沙地區底土無脊椎動物總物種數之季節變化。……………………67 圖28、海草及沙地區底土無脊椎動物多樣性指數之季節變化。…………………68 圖29、海草及沙地區底土無脊椎動物生物量之季節變化。………………………68 圖30、底土無脊椎動物於海草及沙地區之物種組成MDS分析結果。…….……69 圖31、底土無脊椎動物之clustering分析結果。….…………………..…………69 圖32、海草區底土無脊椎動物之豐度及生物量累積曲線之比較。………………70 圖33、沙地區底土無脊椎動物之豐度及生物量累積曲線之比較。………………70 圖34、底棲無脊椎動物與環境因子之冗餘分析。…………………………………71 圖35、海草葉面積及草食面積於高低位之季節變化。……………………………72 圖36、草食作用佔海草葉面積百分比之季節變化。………….…………………72 圖37、海草之生產力與草食面積在單位時間內的季節變化。……..….…………73 圖38、草食作用佔海草生產力百分比之季節變化。……………...………………73 圖39、將沒有咬痕之泰來草餵食臭肚魚。…………………………………………74 圖40、將沒有咬痕之泰來草餵食海膽。……………………………………………74 圖41、野外泰來草咬痕。……………………………………………………………74 圖42、魚類及無脊椎動物之草食作用量於高低位的季節變化。…………………75 圖43、魚類及無脊椎動物之草食百分比於高低位的季節變化。…………………75 圖44、碎屑亁重之季節變化。………………………………………………………76 圖45、泰來草生產面積流向之季節變化。…………………………………………76 圖46、泰來草生產亁重之季節變化。………………………………………………77 圖47、泰來草碳流向佔其生產力百分比之季節變化。……………………………77 圖48、大光海草床冬春季之碳收支。………………………………………………78 圖49、大光海草床夏秋季之碳收支。………………………………………………7

    High School Students’ Online Health Information Behavior

    No full text
    [[abstract]]健康是人類活動的根本,有健康的身體和心靈才能擁有幸福的人生。近年來消費者健康意識抬頭,越來越多人追求高品質的生活環境和健康體魄。從日常生活養生、醫療與藥物新知、安養照護的資訊、求醫須知以及保險的選擇及理賠,都成了大眾所關心的焦點。隨著網際網路的發展,網路使用人口逐年增加,網路也躍升成為最受使用者信賴的來源。然而,隨著全球資訊網的資料量暴增,搜尋技術不斷翻新,使用者在搜尋資訊時所遭遇的困難也漸漸突顯,例如無法從大量的訊息過濾出符合需求的資訊。因此國外已有多位學者致力於使用者網路搜尋行為之研究,研究對象包含兒童與成人。反觀國內關於網路使用者搜尋之研究略嫌不足,故本研究針對處於青春期的高中生進行更多的網路搜尋行為進行調查,期望透過研究結果可以增進高中生的健康素養,提升國民生活水準。

    Toward a More Generalized Benchmark Workload Model for Data Warehouse and Data Mining

    No full text
    隨著網際網路的發達以及資料庫技術的成熟,人們取得資料變得非常的容易,再加上許多網際網路的應用其實就是一個自動化的資料收集工具,資料量之大已幾近爆炸的程度。資料倉儲便是一種用來儲存大量歷史資料的資料庫,提供彙整或是統計的資訊,以提供決策使用的資訊技術。而資料探勘是從大量的資料當中把對於決策過程中有幫助的規則找出來,提供給管理人員做為決策的參考,開創新的商業契機。資料倉儲的效能表現對於使用者的工作效率有著深遠的影響。因此有些用以衡量與預測資料倉儲之效能與效率之工作量模式便孕育而生,一般稱之為績效評估工具,然而目前所公佈的一般資料倉儲績效評估工具是針對特定範圍領域建構出某些典型的領域規格,並沒有一個使用者需求導向的資料倉儲績效評估工具。在資料探勘方面,探勘結果的準確度比起資料探勘所花費的時間來得重要,目前卻沒有一個有效、使用者需求導向的工具來評估資料探勘結果的準確度。我們針對資料倉儲的效能評估以及資料探勘準確度評估,設計一個以使用者需求為導向的工作量模型,來評估資料倉儲與資料探勘工具。As growth of Internet and mature of database technology, people can get the data much easily than before. Many applications on Internet, in fact, are the tools of gather data automatically so that the amount of data is growing bigger and bigger. Data warehouse is one kind of database to store lots of historical data to offer statistical information for the information technology of decisions. Data mining is to find the useful rules for decisions from the amount of data to help the managers make decisions and create the new opportunities of business. The performance of data warehouse is import to user’s work efficiency. Therefore, there are some workload model arise to evaluate and predict the performance and efficiency of data warehouse called benchmark. However, the data warehouse specification announced these days are constructed to some typical domain specific, and the performance evaluation stand on synthetic workload. But, when the difference between the domain of data warehouse user applied and domain of performance evaluation tool is very large, the performance metric may different a lot to the result of benchmark tool. In data mining, the accuracy of mining result is important to business. The accuracy of mining result is more important than the time spend on data mining. However, there is no any useful tool to evaluate the accuracy of mining result and there is no any standard of performance criteria for data mining, either. We design a user requirement-oriented workload to evaluate performance of data warehouse and precision of data mining

    Determination of tranexamic acid in tranexamic acid capsules by HPLC

    No full text
    目的建立用于测定氨甲环酸胶囊中氨甲环酸含量的HPLC法。方法采用Karomasil-C_(18)ODS(250 mm×4.6 mm,5μm)色谱柱。流动相为磷酸盐缓冲液(pH值为2.5)-甲醇(60:30,V/V);检测波长:220 nm,流速:1.0 mL·min~(-1)。结果线性范围0.4~2.0 g·L~(-1),r=0.999 4。回收率为100.7%,RSD=0.64%(n=6)。结论本方法简便,精确,重现性好,可用于控制氨甲环酸胶囊中氨甲环酸的内在质量。AIM To establish a method for the determination of the content of tranexamic acid in tranexamic acid capsules by HPLC.METHODS A Karomasil-C_(18)ODS(250 mm×4.6 mm,5μm)was used.The mobile phase was phosphate buffer solution(pH=2.5)-methanol(60:30,V/V).The determination wave length was 220 nm and the flow- rate was 1.0 mL·min~(-1).RESULTS The method was linear within the range of 0.4-2.0 g·L~(-1);r=0.999 4.The av- erage recovery rate was 100.7%(RSD=0.64%,n=6).CONCLUSION The method is easy,rapid,accurate and re- producible.It can be a quality control standard for tranexamie acid capsules

    STUDY ON THE GENETIC DIVERSITY OF AMPHIOXUS

    No full text
    运用分子标记技术 ,对厦门现有文昌鱼(BranchiostomabalcheriGray)海域 (蟹口海域、南线海域、黄厝海域 )文昌鱼种群进行遗传多样性研究。通过10个有效引物的RAPD反应 ,共扩增出238条带 ,其中多态性条带为121,占总扩增条带的50.84 %。Nei指数法分析和UPGMA统计分析表明 :厦门3个海域文昌鱼可分为2个组 ,平均遗传距离为0.11。南线海域文昌鱼和黄厝海域文昌鱼的遗传距离为0.07 ,亲缘关系较近 ,聚类于同一组 ;蟹口海域文昌鱼与南线海域文昌鱼和黄厝海域文昌鱼的遗传距离分别为0.12和0.14 ,亲缘关系较远 ,单独为一组 ,结论与3个海域的文昌鱼形态比较结果一致 ,出现遗传分化。Shannon遗传多样性指数统计结果表明 :蟹口海域种群为0.616 ,南线海域种群为0.497,黄厝海域种群为0.391。厦门文昌鱼种群遗传多样性是各种群的遗传特性与该海域各种环境生态因子长期作用的结果 ,三元线性相关分析发现目前主要生态因素是底质和海水深度 ,3个海域中以蟹口海域的自然环境最为优越(其底质为中粗沙或粗中沙、水深8~15m)。根据以上研究结果 ,本文提出了厦门海域文昌鱼资源的保护建议。Amphioxus(Branchiostoma balcheri Gray)is a rare marine species under state level protection(2nd class).RAPD molecular marker technique suitable for analyzing the genetic differentiation of amphioxus was established and used in the investigation on genetic diversity of the amphioxus population in nowadays Xiamen sea areas(Xiekou,Nanxian and Huang-cuo).238bands were amplified from RAPD analysis on10valid oligonucleotide arbitrary primers,of which,121were polymorphic bands(50.84%of the total).Nei indexanalysis and UPGMA statistical analysis indicated that amphioxuses in these3areas could be divided intotwogroups withthe average genetic distance of0.11.The genetic distance between animals in Nanxian and Huangcuo area was0.07and thus could be classified as one group due to close genetic relationships, The population in Xiekou,however,belonged to another group due to its distance,0.12and0.14,fromHuangcuo′s popuˉlation.This resultwas in accordance withthe morphological comparison amonganimals fromthose areas.Shannon's statistics on genetic diversity,showed the indices in populations of Xiekou,Nanxian and Huangcuo,were0.616,0.497and0.391,respectively.This was reasonable because the best environment was found in the Xiekou area with a substrate of mediˉum-coarse or coarse-mediumsand and a water depth8-10m.On the basis of these results suggestions were formulated regarding amphioxus resource protection in the Xiamen sea area.福建省青年科技人才创新项目2001J033

    毛西番莲提取物对蘑菇酪氨酸酶的抑制作用

    Get PDF
    以毛西番莲的叶片为材料,经水提、过滤、旋转蒸发浓缩,得到毛西番莲酪氨酸酶抑制剂的提取物.研究该提取物对蘑菇酪氨酸酶的效应,结果表明,毛西番莲提取物对蘑菇酪氨酸酶有较强的抑制作用,其IC50值为0.47 mg/mL,抑制机理为可逆混合型,其对游离酶的抑制常数(KI)0.56 mg/mL和对酶-底物络合物的抑制常数(KIS)为1.10 mg/mL
    corecore